Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
câu c nè, tam giác ahb=tam giác ahc(chứng minh trên) suy ra bh=ch(tc) suy ra dh là trung tuyến
k là trung điểm của ac(gt) suy ra ek là trung tuyến
suy ra cg cũng là trung tuyến
suy ra cg,dh,ek cùng đi qua 1 điểm
Cái này lớp 8 mới học mà ;-;