Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)
Ta có
AB=AC (tg ABC cân)
AE=AC (Tg ACE là tg đều)
=> AB=AE => tam giác ABE cân tại A
\(\Rightarrow\widehat{ABE}=\widehat{AEB}=\frac{\left(180^o-\widehat{BAE}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Xét tg cân ABD ta có
\(\widehat{ABD}=\widehat{BAD}=\frac{\left(180^o-\widehat{ADB}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Suy ra từ B có 2 đoạn thẳng BE bà BD cùng tạo với AB 1 góc 15 độ => BD trùng BE nên B; D; E thẳng hàng
Mình vẽ được 2 hình dưới nhưng hình bên trái phù hợp với đpcm .Phải sửa đề thành : Trên nửa mặt phẳng bờ BM chứa C lấy điểm N sao cho góc BMN,BDE bù nhau.
góc BDE = góc BAC (2 góc đồng vị của AC // DE) mà góc BMC,góc BAC bù nhau ; góc BMN,góc BDE bù nhau (gt)
=> góc BMC = góc BMN mà 2 tia MN,MC nằm trên cùng nửa mặt phẳng bờ BM (do gt) => MN,MC trùng nhau hay M,N,C thẳng hàng.