Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nha
a) Xét \(\Delta ABM\)và \(\Delta ADM\)có:
AB = AD
BM = DM ( M là trung điểm của BD)
AM là cạnh chung
=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)
b)
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: BK=DK
Xét ΔBKF và ΔDKC có
KB=KD
\(\widehat{KBF}=\widehat{KDC}\)
BF=DC
Do đó: ΔBKF=ΔDKC
Suy ra: \(\widehat{BKF}=\widehat{DKC}\)
=>\(\widehat{BKF}+\widehat{BKD}=180^0\)
=>F,D,K thẳng hàng
1: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
2: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: \(\widehat{ABK}=\widehat{ADK}\)
3: Xét ΔBKF và ΔDKC có
BK=DK
\(\widehat{KBF}=\widehat{KDC}\)
BF=DC
Do đó: ΔBKF=ΔDKC