Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCBD có
CA,BE là đường trung tuyến
CA cắt BE tại I
Do đó: DI đi qua trung điểm của BC
Xét tam giác AIB và tam giác CIE, ta có:
+ \(AB=CE\)( gt )
+ \(IB=IC\)( I thuộc trung trực của BE )
+\(AI=CI\)( I thuộc trung trực của AC )
\(\Rightarrow\)Tam giác AIB \(=\)Tam giác CIE ( c.c.c )
Ta có: Tam giác AIB \(=\)Tam giác CIE ( CMT )
\(\Rightarrow\)Góc IAB \(=\)Góc ICE ( 2 góc tương ứng ) ( 1 )
Lại có: AI \(=\)IC ( CMT )
\(\Rightarrow\)Tam giác AIC cân tại I ( Định nghĩa tam giác cân )
\(\Rightarrow\)Góc IAC \(=\)Góc ACI ( Tính chất tam giác cân ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Góc IAB \(=\)Góc IAC
Hay AI là là phân giác của góc BAC