Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)
nên MN//BE và MN=BE
Xét tứ giác BMNE có
MN//BE
MN=BE
Do đó: BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AN=NC
Ta có: HM=AM
nên M nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: HN=AN
nên N nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH
b: Xét ΔBAC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung trực của ΔBAC
Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)
mà \(AN=\dfrac{AC}{2}\)
nên ME=AN
mà AN=HN
nên HN=ME
Xét tứ giác HMNE có
MN//HE
nên HMNE là hình thang
Hình thang HMNE có HN=ME
nên HMNE là hình thang cân
a: Xét ΔABC có
F là trung điểm của BC
D là trung điểm của AB
Do đó: FD là đường trung bình
=>FD//EC và FD=EC
hay FDEC là hình bình hành
a, Vì DE là đường trung bình của tam giác ABC=> DE// và = 1/2 BC
=>DE // và = BF
=> DEFB là hình bình hành
b, Vì È là đường trung bình của tam giác CBA
=> EF // và = 1/2 AB => EF = BD
Mà HD// DE => EFHD là hình thang cân
c, Áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông => DH = DA=DB
=> tam giác DBH là tam giác cân => góc DHB = 60 độ
=> DHC = 180-60 = 120 độ
=> góc HDE= DEF= 60 độ
=> góc EFH = 120 độ
XONG RỒI NHỚ NHA ^^