Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
a/ ta có tam giác ABC cân tại A mà AI là trung tuyến (I là trung điểm BC)
=> AI là đường cao, phân giác
xét tam giác AIC vuông tại I có AC^2=AI^2+IC^2 (PYTAGO)
=> AI= 3cm
=> S ABC= 1/2 (AI.BC)=12 cm^2
b/ ta có MN//BC (gt) => MNCB là hình thang
mà AI vuông BC => MN vuông AI
có AM=AN (gt) ; A thuộc MN => A là trung điểm của MN
dễ chứng minh TAM GIÁC AMB = TAM GIÁC ANC (c-g-c)
=> ABM=ACN mà ABC=ACB => ABM+ABC=ACN+ACB
=> MBC=NCB mà MNCB là hình thang
=> MNCB là hình thang cân
c/ dễ chứng minh AH=KI (đường trung bình trong tam giác MNB, NCB) và AK=IH (đường trung bình trong tam giác MNC,BCM)
có MB=NC (hình thang cân) mà H là trung điểm MB ; K là trung điểm NC
=> BH=KC=MH=NK
xét tam giác BHI và tam giác CKI có
BI=IC (I là trung điểm) ; BH=KC (cmt) ; HBI=KCI (cmt)
=> tam giác BHI=tam giác CKI (c-g-c)
=>HI=KI
mà AH=KI ; AK=HI (cmt)
=> AH=AK=HI=KI => AHIK là hình thoi