Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây - Câu hỏi của Trần Thiên Kim - Toán lớp 8 | Học trực tuyến
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
ok, lm câu b; hình tự vẽ
a) Câu a đã kẻ đường phụ chưa?
b) Gọi 3 cạnh của \(\Delta ABC\) là AB = c; AC = b; BC = a
Theo câu a ta có: b2 = c ( a + c)
Do \(\widehat{B}>\widehat{C}\) => b > c
+ Nếu b = c + 1
=> ( c + 1 )2 = c ( a + c)
=> c2 + 2c + 1 = ac + c2
=> 2c - ac +1 = 0
=> c ( a - 2 ) = 1
=> c = 1; a - 2 = 1 => a = 3; b = 2; c = 1
=> Loại vì không thỏa mãn BĐT tam giác
+ Nếu b = c + 2
=> ( c + 2 )2 = c ( a + c)
=> c2 + 4c + 4 = ac + c2
=> c ( a - 4 ) = 4
=> \(\left[{}\begin{matrix}c\left(a-4\right)=1.4\\c\left(a-4\right)=4.1\\c\left(a-4\right)=2.2\end{matrix}\right.\) => \(\left[{}\begin{matrix}c=1;a=8\left(L\right)\\c=4;a=5\\c=2;a=6\left(L\right)\end{matrix}\right.\)
=> \(a=5;c=4;b=6\)
Vậy 3 cạnh lần lượt của tam giác là 4;5;6
Không có TH b = c + x ( x > 2 )
\(\Leftrightarrow\frac{AB}{AI}=\frac{BC}{IC}=\frac{AB+BC}{AI+IC}=\frac{18}{AC}\Rightarrow AI=\frac{AB.AC}{18}=\frac{4}{9}.AC\)
tgiac ABC đồng dạng AIB( chung A, ABI=ACB)
\(\Rightarrow\frac{AB}{AC}=\frac{AI}{AB}\Leftrightarrow\frac{8}{AC}=\frac{\frac{4}{9}.AC}{8}\Rightarrow\frac{4}{9}AC^2=64\)
Giải AC