Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có I là tâm đường tròn nội tiếp
\(S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}.AB.r+\frac{1}{2}.BC.r=\frac{1}{2}\)
\(AB+BC+CA.r=pr\)
P/s: Ko chắc
Vẽ đường cao AH của \(\Delta\)ABC
Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)
Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC
Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)
\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)
\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)
Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:
\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)
Do đó:
\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)
Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)
Gọi A; B; CD,E,F làn lượt là tiếp điểm của đường tròn nội tiếp tam giác với BC; CA; AB
Khi đó: \(S=S_{BIC}+S_{CAI}+S_{BAI}=\frac{1}{2}\) \(BC.ID+CA.IE+AB.IF=p.r\)
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\) \(a+b+c=p=\frac{S}{r}\)
\(\RightarrowĐPCM\)
Không tính tổng quát, giả sử: \(h_a\le h_b\le h_c\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{h_b}\ge\frac{1}{h_c}\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{3}\)
\(\Rightarrow h_a\le3\)
Mặt khác: \(\frac{1}{h_a}< \frac{1}{r}=1\Rightarrow h_a>1\Rightarrow h_a\ge2\)
Vậy: \(h_a=2\)hoặc \(h_a=3\)
Nếu \(h_a=2\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{2}=\frac{1}{2}\)**
Ta có: \(a\ge b\ge c\)do \(h_a\le h_b\le h_c\)
Để a; b; clà 3 cạnh của một hình tam giác ta chỉ cần b + c > a do khi \(a\ge b\ge c\)theo ta sẽ có ngay a + c > b, a + b > c
\(\Leftrightarrow\frac{S}{h_b}+\frac{S}{h_c}>\frac{S}{h_a}\)
\(\Leftrightarrow\frac{1}{h_b}+\frac{1}{h_c}>\frac{1}{h_a}=\frac{1}{2}\)mâu thuẫn với **
Vậy, loại trường hợp này.
\(\Rightarrow h_a=3\Rightarrow h_b\ge h_c\ge3\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{3}=\frac{2}{3}\)
\(\frac{1}{h_b}\ge\frac{1}{h_c}\)
Suy ra: \(\frac{1}{h_b}\ge\frac{1}{3}\Rightarrow h_b\le3\)
Mà: \(h_b\ge\frac{1}{3}\Rightarrow h_b\le3\)
Vậy: \(h_b=3\Rightarrow h_c=3\)
\(\RightarrowĐPCM\)
A B C D E O H F
a) Tự chứng minh
b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.
Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)
tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)
\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)
hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)
ta có : BC = 2R ; AD = AE = r
nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)
= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)
= AB + AC ( đpcm)
Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)
ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)
Dau = xay ra khi b=c hay tam giac ABC vuong can tai A