Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D I K O ! 1 2 1 2
a) Xét Tam giác AOB có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}\)
Xét tam giác BOC có:\(\widehat{B_1}+\widehat{C_1}+\widehat{BOC}=180^o\Rightarrow\widehat{B_1}+\widehat{C_1}=180^o-\widehat{BOC}\)
Mà \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B}\)(BD là phân giác )
\(\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)
\(\Rightarrow2\widehat{B_1}+2\widehat{C_1}=180^o-\widehat{A}\Rightarrow2\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-\widehat{A}\)\(\Rightarrow2\left(180^o-\widehat{BOC}\right)+\widehat{A}=180^o\Rightarrow\widehat{BOC}=90^o+\frac{\widehat{A}}{2}=90^o+120^o:2=150^o\)
\(\Rightarrow\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=150^o-30^o-30^o=90^o\)
=> OI vông OK
b)Ta có:
\(\widehat{EOB}=\widehat{DOC}=180^o-\widehat{BOC}=30^o\)
Xét tam giác EBO và IBO có:
BO chung
\(\widehat{B_1}=\widehat{B_2}\)( phân giác )
\(\widehat{BOE}=\widehat{BOI}=30^o\)
=> \(\Delta BEO=\Delta BIO\)(g.c.g)
=> BE=BI
Tương tự ta chứng minh đc: \(\Delta CDO=\Delta CKO\)(g.c.g)=> CD=CK
Mà BI+IK+KC=BC=> BE+IK+CD=BC
=> BE+CD< BC
o A B C D E M N 120 30 30
Vì hai đường phân giác \(BD,CE\)cắt nhau tại \(O\)nên \(O\)là tâm đường tròn ngoại tiếp tam giác \(ABC\)
Do góc \(\widehat{BOC}\)là góc ở tâm cùng chắn cung \(\widebat{BC}\)với góc \(\widehat{BAC}\)Nên \(\widehat{BOC}=2\widehat{BAC}=120^0=120^0\)
mà \(\widehat{BOM}+\widehat{MON}+\widehat{NOC}=\widehat{BOC}\Rightarrow\widehat{MON}=\widehat{BOC}-\widehat{NOC}-\widehat{MOB}=120^0-30^0-30^0=60^0\)
giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.
đề bài sai à
câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à
a) Ta có: \(\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=\widehat{BOC}-60^o\)
Mà \(\widehat{BOC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-\left(\frac{\widehat{B}}{2}+\frac{\widehat{C}}{2}\right)=180^o-\frac{180^o-\widehat{A}}{2}=180^o-30^o=150^o\)
\(\Rightarrow\widehat{IOK}=150^o-60^o=90^o\Rightarrow OI\perp OK\)
b) Ta có: \(\widehat{BOE}=\widehat{COD}=180^o-30^o-90^o-30^o=30^o\)
Xét \(\Delta BEO;\Delta BIO\); có:
\(\widehat{B_1}=\widehat{B_2}\left(gt\right);\) Chung BO \(;\widehat{IOB}=\widehat{EOB}=30^o\)
=> \(\Rightarrow\Delta BEO=\Delta BIO\left(g.c.g\right)\Rightarrow BE=BI.\)
Tương tự thì KC=DC
Mà BC>BI+KC => BE > BE+DC
abc = 122222222222222222222