\(\widehat{A}=120^0\). HAi đường phân giác BD và CE của tam giác cắt nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

Hỏi đáp Toán

a) Ta có: \(\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=\widehat{BOC}-60^o\)

\(\widehat{BOC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-\left(\frac{\widehat{B}}{2}+\frac{\widehat{C}}{2}\right)=180^o-\frac{180^o-\widehat{A}}{2}=180^o-30^o=150^o\)

\(\Rightarrow\widehat{IOK}=150^o-60^o=90^o\Rightarrow OI\perp OK\)

b) Ta có: \(\widehat{BOE}=\widehat{COD}=180^o-30^o-90^o-30^o=30^o\)

Xét \(\Delta BEO;\Delta BIO\); có:

\(\widehat{B_1}=\widehat{B_2}\left(gt\right);\) Chung BO \(;\widehat{IOB}=\widehat{EOB}=30^o\)

=> \(\Rightarrow\Delta BEO=\Delta BIO\left(g.c.g\right)\Rightarrow BE=BI.\)

Tương tự thì KC=DC

Mà BC>BI+KC => BE > BE+DC

 

8 tháng 11 2017

abc = 122222222222222222222

17 tháng 1 2019

A B C E D I K O ! 1 2 1 2

a) Xét Tam giác AOB có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}\)

Xét tam giác BOC có:\(\widehat{B_1}+\widehat{C_1}+\widehat{BOC}=180^o\Rightarrow\widehat{B_1}+\widehat{C_1}=180^o-\widehat{BOC}\)

Mà \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B}\)(BD là phân giác )

\(\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)

\(\Rightarrow2\widehat{B_1}+2\widehat{C_1}=180^o-\widehat{A}\Rightarrow2\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-\widehat{A}\)\(\Rightarrow2\left(180^o-\widehat{BOC}\right)+\widehat{A}=180^o\Rightarrow\widehat{BOC}=90^o+\frac{\widehat{A}}{2}=90^o+120^o:2=150^o\)

\(\Rightarrow\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=150^o-30^o-30^o=90^o\)

=> OI vông OK

b)Ta có:

 \(\widehat{EOB}=\widehat{DOC}=180^o-\widehat{BOC}=30^o\)

Xét tam giác EBO và IBO có:

BO chung

\(\widehat{B_1}=\widehat{B_2}\)( phân giác )

\(\widehat{BOE}=\widehat{BOI}=30^o\)

=> \(\Delta BEO=\Delta BIO\)(g.c.g)

=> BE=BI

Tương tự ta chứng minh đc:  \(\Delta CDO=\Delta CKO\)(g.c.g)=> CD=CK

Mà BI+IK+KC=BC=> BE+IK+CD=BC

=> BE+CD< BC

3 tháng 6 2017

o A B C D E M N 120 30 30

Vì hai đường phân giác \(BD,CE\)cắt nhau tại \(O\)nên \(O\)là tâm đường tròn ngoại tiếp tam giác \(ABC\)

Do góc \(\widehat{BOC}\)là góc ở tâm cùng chắn cung \(\widebat{BC}\)với góc \(\widehat{BAC}\)Nên \(\widehat{BOC}=2\widehat{BAC}=120^0=120^0\)

mà \(\widehat{BOM}+\widehat{MON}+\widehat{NOC}=\widehat{BOC}\Rightarrow\widehat{MON}=\widehat{BOC}-\widehat{NOC}-\widehat{MOB}=120^0-30^0-30^0=60^0\)

5 tháng 1 2021

giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.

5 tháng 1 2021

đề bài sai à

câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0