K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

a/ Gọi E là trung điểm của BC

Ta có: \(BC=2AB\left(gt\right)\)

\(\Rightarrow AB=\frac{1}{2}BC\) (1)

Lại có E là trung điểm của BC

\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)

Từ (1) và (2) \(\Rightarrow AB=BE=EC\)

Xét \(\Delta BDA\)\(\Delta BDE\) có:

BD chung

\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))

AB=BE (cmt)

Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)

Xét \(\Delta BED\)\(\Delta CED\) có:

\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))

DE chung

BE=EC (cmt)

Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)

\(\Rightarrow DB=DC\) (hai cạnh tương ứng)

b/ Xét \(\Delta ABC\) có:

\(\widehat{B}+\widehat{C}=90^0\)

Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)

Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)

Lưu ý: Hình vẽ minh họa phía dưới
A D C B E 1 2 1 2 1 2 3

27 tháng 9 2021

Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)

\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)

Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)

Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)

Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)

Vậy ...

 

17 tháng 9 2023

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ  - (\widehat B + \widehat {BAD}) < 180^\circ  - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).

9 tháng 10 2023

nhanh lên mình cần gấp lắm

giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu

9 tháng 10 2023

Chịu lớp6

Chịu