Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: \(BC=HB+HC=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)
a) Xét tam giác HBA và tam giác ABC có
góc H = góc A (=90 độ)
góc ABC chung
suy ra tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có
BC^2= AB^2+AC^2
BC^2=12^2+16^2
BC^2 = 400
BC=căn 400 = 20 cm
+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)
suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)
suy ra HA/16=12/20
SUY RA HA=(16*12)/20 =9,6cm
c) ta có DE là tia phân giac
suy ra AE/EB=AD/BD 1
VÌ DF là tia p/g
suy ra FC/FADC/AD 2
TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA
suy ra EA/EB*DB/DC*FC/FA =1(đfcm)
a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :
\(\widehat{AHB}=\widehat{BAC}=90^o;\widehat{B}\left(chung\right)\)
\(\Rightarrow\)\(\Delta HBA\)\(\approx\)\(\Delta ABC\)( g.g )
b) Xét \(\Delta HBA\)và \(\Delta HAC\)có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{BAH}=\widehat{ACH}\left(cung-phu-\widehat{B}\right)\)
\(\Rightarrow\Delta HBA\approx\Delta HAC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{AH}=\frac{AH}{HC}\Rightarrow AH^2=BH.HC\)
a) Xét tam giác \(HBA\)và tam giác \(ABC\):
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\)chung
Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).
b) Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(Định lí Pythagore)
\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).
\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)
\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)
(Bạn tự vẽ hình nhé).
a,Xét 2 tam giác vuông HBA và ABC có:
Góc H= góc A (=90 độ).
AB chung.
=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).
b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:
BC2= AB2 + AC2
Hay BC2 = 62 + 82
= 36 + 64
= 100
=> BC= 10 (cm).
Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)
=> BH/AB = AB/ BC = AH/AC
Hay BH/6 = 6/10 = AH/8
=> BH = 6.6/10 = 3,6 (cm).
AH= 8.6/10 = 4,8 (cm).
Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo