K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

3 tháng 11 2023

loading... a) Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (BD là tia phân giác của ABC)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ AD = ED (hai cạnh tương ứng)

Lại do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ ∠DAF = ∠DEC = 90⁰

Xét hai tam giác vuông: ∆DAF và ∆DEC có:

AD = ED (cmt)

∠ADF = ∠EDC (đối đỉnh)

⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)

⇒ AF = EC (hai cạnh tương ứng)

c) ∆BAE có:

AB = BE (gt)

⇒ ∆BAE cân tại B

⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2  (1)

Do AF = EC (cmt)

AB = BE (gt)

⇒ AF + AB = EC + BE

⇒ BF = BC

⇒ ∆BFC cân tại B

⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2  (2)

Từ (1) và (2) suy ra:

∠BEA = ∠BCF

Mà ∠BEA và ∠BCF là hai góc đồng vị

⇒ AE // CF

29 tháng 12 2021

A B C D E F

a/ Xét \(\Delta ABD\)và \(\Delta EBD\)

BA=BE (gt); BD chung

\(\widehat{ABD}=\widehat{EBD}\)(gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

b/

\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)

c/

Ta có

BE=BA (gt); AF=CE (gt)

=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B

Mà BD là phân giác \(\widehat{ABC}\)

\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Mà \(CA\perp BF\)

=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ  1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng

29 tháng 12 2021

hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác

a) Xét tam giác ABD và tam giác EBD có:

AB=BE (gt)

^ABD=^EBD (^ABD là tia phân giác)

BD chung 

=> tam giác ABD = tam giác EBD ( c.g.c ) 

b) Vì ABC là tam giác vuông tại A

=> tam giác ABD là tam giác vuông tại A

Mà: tam giác ABD = tam giác EBD ( c.g.c )  

=> ^BED=^BAD= 90o

=> DE_|_BC (đpcm)

c) Nối F và C lại với nhau

Vì: FA=FB ( gt)

Mà CA_|_FB ( tam giác ABC _|_ tại A)

=> CA là đg trung trực của tam giác ABC

=> CA là đg trung tuyến của tam giác ABC

Mà tia phân giác ABC cắt AC tại D

=> D là trọng tâm của tam giác ABC

=> D,E,F thằng hàng (đpcm)

17 tháng 1 2021

BCEDAF

 *Hình quên đánh dấu ABD = DBE  nhé

*Cần viết gt và kl thì bảo mình nhá <3

                               Giải

             a) Xét ∆ABD và ∆EBD có :

                 AB = BE (gt)                                                |

                FBD =  DBE (AD là tia phân giác ABE)       }

                BD là cạnh chung                                         |

                   => ∆ABD = ∆EBD (c.g.c)

17 tháng 1 2021

b) Vì ∆ABD = ∆EBD

=> BAD=BED=900  (2 góc tương ứng)

      AD=DE (2 cạnh tương ứng)

Xét ∆ADF và ∆EDC có :

    FAD=CED(=900)  |

    AD=DE (cmt)        }

    ADF=EDC            

=>∆ADF và ∆EDC (g.c.g)

=>AF = EC (2 cạnh tương ứng)

14 tháng 12 2021

giúp mình với mọi người ơi

 

14 tháng 12 2021

làm ơn ạ 

 

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>\(\widehat{BED}=\widehat{BAD}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

b: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔDAF=ΔDEC

=>DF=DC

8 tháng 5 2019

Câu a,b: dễ bạn tự làm nhé

c) Ta có tam giác BAE = tam giác BDE ( cm b)

=> góc CAB = góc BDF (2 góc t/ư)

Mà góc CAB = 90*( vì tam giác ABC vuông tại A)

=> góc BDF =90*

\(\Rightarrow\hept{\begin{cases}ED\perp BC\\FD\perp BC\end{cases}}\)(ĐN)

=> D, E, F thẳng hàng ( cùng \(\perp\)BC)

31 tháng 12 2023

a:

Sửa đề: Chứng minh DE\(\perp\)BC

Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

b: Sửa đề: F là giao điểm của AB và DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=EC