Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha
xét (0) có 2 \(\widehat{CAB}\)= \(\widehat{COB}\)( góc nt - góc ở tâm cùng chắn cung \(\widebat{BC}\))
\(\widehat{COB}\)= \(^{60^0}\)
\(\Delta\)ABC vg tại c
cos 30= AC/AB
AB=2\(\sqrt{3}\)
R= \(\sqrt{3}\)
S hq OBC= \(\frac{60.R^2.3,14}{360}\)=1,57 cm2
\(\widehat{COB}\)= 600
sđ\(\widebat{BC}\)nhỏ= 600
sđ \(\widebat{BC}\) lớn= 360-60=3000
LcgBC LỚN= \(\frac{300.R.3,14}{180}\)\(\approx\)9,06 cm
ko bt có đúng ko nữa
# mã mã #
Em kham khảo link này nhé.
Câu hỏi của Trần Đức Thắng - Toán lớp 9 - Học toán với OnlineMath
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
Trả lời..............
Theo mình làm là ..........
a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)
AHB=900 (AH là đường cao)
Suy ra:ADB=AHB=900
Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB
Tâm O đường tròn là trung điểm AB
b, Chứng minh EAD=HBD
Do AB vuông góc vớiAB
Suy ra EAD =ABD (1)
Mà ABD=HBD (2)
Từ (1) và (2) ta được EAD=HBD
Chứng minh OD sOng song OB
Ta có OD=OB
Nên tam giác OBD cân tại O
Suy ra OD song song OB
c, Tính diện tích phần tam giác ABC nằm ngoài đường tròn O
Ta có:ABC=60 độ
Xin lỗi tới đây tớ ko biết làm
a) Xét tứ giác BMNC :
Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)
\(\widehat{CNB}\)= 90 ( BN là đường cao)
M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC
=> Tứ giác BMNC là tứ giác nội tiếp
Xét tứ giác AMHN :
Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )
\(\widehat{HNA}\)= 90 ( BN là đường cao )
\(\widehat{HMA}+\widehat{HNA}\)=180
=> Tứ giác AMHN là tứ giác nội tiếp
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm