Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Nguyễn Thị Hương Giang - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
c)
Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
C A B 60 E K D 1 2 1 2 1 2
a) Ta có AE là phân giác của góc BAC
=>góc A1= góc A2=góc BAC /2 =60o/2=30o
Mà góc A2+ góc E1=90o(tam giac AEK vuông tại K)
=>góc E1=90o-30o=60o(1)
Ta lại có: góc BAC + góc B1=90o( tam giác ABC vuông ở A)
=>góc B1 = 90o-60o=30o
Mà góc B1+góc E2=90o(tam giác BEK vuông ở K)
=>góc E2=90o-30o=60o (2)
Từ (1) và (2) suy ra: góc E1=góc E2
Xét tam giác AEK vuông ở K và tam giác BEK vuông ở K :
góc E1=góc E2(cmt)
EK: chung
Suy ra: tam giác AEK= tam giác BEK (cgv-gn)
=>AK=BK (2 cạnh tương ứng)
b)Vì tam giác AEK= tam giác BEK (câu a)
nên:AE=BE(2 cạnh tương ứng)
Xét tam giác ACE vuông tại A và tam giác BDE vuông tại D có:
AE=BE (cmt)
góc AEC=góc BED (đối đỉnh)
Suy ra: tam giác ACE= tam giác BDE (ch-gn)
=>CE=ED (2 cạnh tương ứng )
Mà BE=AE(cmt)
nên: CE+BE=ED=AE
Suy ra: AD=BC
Em tham khảo tại đây nhé.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
C A B E K D O
A) XÉT \(\Delta ACE\)VÀ \(\Delta AKE\)CÓ
\(\widehat{ACE}=\widehat{AKE}=90^o\)
AE LÀ CẠNH CHUNG
\(\widehat{CAE}=\widehat{KAE}\)(GT)
=> \(\Delta ACE\)=\(\Delta AKE\)(CH-GN)
\(\Rightarrow\widehat{CEA}=\widehat{KEA}\)( HAI GÓC TƯƠNG ỨNG )
TA CÓ AE LÀ PHÂN GIÁC CỦA \(\widehat{CAB}\)
\(\Rightarrow\widehat{CAE}=\widehat{EAK}=\frac{60^o}{2}=30^o\)
XÉT \(\Delta CAE\)CÓ \(\widehat{CAE}+\widehat{CEA}+\widehat{ACE}=180^o\left(ĐL\right)\)
thay \(30^o+\widehat{CEA}+90^o=180^o\)
\(\Rightarrow\widehat{CEA}=180^o-90^o-30^o=60^o\)
\(\Rightarrow\widehat{CEA}=\widehat{KEA}=60^o\)
mà \(\widehat{CEA}+\widehat{KEA}+\widehat{KEB}=180^o\)( góc bẹt )
thay \(60^o+60^o+\widehat{KEB}=180^o\)
\(\Rightarrow\widehat{KEB}=180^o-\left(60^o+60^o\right)=60^o\)
XÉT \(\Delta AKE\)VÀ \(\Delta BKE\)CÓ
\(\widehat{KEA}=\widehat{KEB}=60^o\)
EK LÀ CẠNH CHUNG
\(\widehat{EKA}=\widehat{EKB}=90^o\)
=>\(\Delta AKE\)=\(\Delta BKE\)(g-c-g)
\(\Rightarrow AK=KB\left(ĐPCM\right)\)
B) TA CÓ \(\Delta AKE\)=\(\Delta BKE\)
=> AE=BE( HAI CẠNH TƯƠNG ỨNG )
XÉT \(\Delta ACE\)VÀ \(\Delta BDE\)CÓ
\(\widehat{ACE}=\widehat{BDE}=90^o\)
\(AE=BE\left(CMT\right)\)
\(\widehat{CEA}=\widehat{DEB}\left(Đ^2\right)\)
=>\(\Delta ACE\)=\(\Delta BDE\)(CH-GN)
\(\Rightarrow CE=DE\)( HAI CẠNH TƯƠNG ỨNG )
TA CÓ
\(AE+DE=AD\)
\(BE+CE=BC\)
MÀ \(DE=CE\left(CMT\right);AE=BE\left(CMT\right)\)
\(\Rightarrow AD=BC\)
HƠI DÀI TỚ LÀM CÂU C TIẾP TRANG KHÁC NHA
C)GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AC,BD,KE
VÌ \(\Delta ACE=\Delta BDE\left(CMT\right)\)
\(\Rightarrow\widehat{CAE}=\widehat{DBE}\)(HAI GÓC TƯƠNG ỨNG )
VÌ \(\Delta AEK=\Delta BEK\left(CMT\right)\)
\(\Rightarrow\widehat{EAK}=\widehat{EBK}\)( HAI GÓC TƯƠNG ỨNG)
TA CÓ
\(\widehat{CAE}+\widehat{EAK}=\widehat{CAK}\)
\(\widehat{DBE}+\widehat{EBK}=\widehat{DBK}\)
MÀ \(\widehat{CAE}=\widehat{DBE}\)(CMT)\(;\widehat{EAK}=\widehat{EBK}\left(CMT\right)\)
\(\Rightarrow\widehat{CAK}=\widehat{DBK}\)HAY \(\widehat{OAB}=\widehat{OBA}\)
\(\Rightarrow\Delta OAB\)CÂN TẠI O
MÀ CO LÀ TIA ĐỔI CỦA CA
OE LÀ TIA ĐỔI CỦA EK
OD LÀ TIA ĐỔI CỦA DB
=> BA ĐƯỜNG THẲNG AC,BD,KE CÙNG ĐI QUA TẠI MỘT ĐIỂM