Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Tam giác có độ dài ba cạnh 6dm ; 8cm ;10cm là tam giác vuông đúng hay sai ?
Làm
Đổi 6dm = 60 cm
Ta có:602 = 360 cm
82 + 102 = 64 + 100 = 164 ( cm )
Mà 360 khác 164
=> 602 khác 82 + 102
=> Không thể có một tam giác vuông nếu có các cạnh như trên.
A.Đúng
B.Sai
*Tam giác ABC vuông tại B có AB = 8cm ; AC =17cm . Độ dài đoạn thẳng BC là
Làm
Xét tam giác ABC vuông ở B có:
AC2 = AB2 + BC2
=> BC2 = AC2 - AB2
=> BC2 = 172 - 82
=> BC2 = 289 - 64
=> BC2 = 225
=> BC = 15 ( cm )
Vậy BC = 15 cm
A.15 cm
B.25 cm
C.30 cm
xét tg ABC vuông tại A có:
BC2=AB2+AC2
=>BC2=62+82=36+64=100=102
=>BC=10(cm)
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )
=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )
b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông
c ) DH \(\perp\)BC => Tam giác BHD vuông
Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )
=> Tam giác BHD = tam giác BAD
=> \(\widehat{BDA}=\widehat{BDH}\)
=> DB là tia p/g của góc ADN
d ) tự làm
Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)
=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)
b) Ta có: AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)
c) Xét t/giác ABD và t/giác HBD
có: \(\widehat{A}=\widehat{BHD}=90^0\)
BD : chung
\(\widehat{ABD}=\widehat{HBD}\)(gt)
=> t/giác ABD = t/giác HBD (ch - gn)
=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)
=> DB là tia p/giác của góc ADH
d) Xét t/giác ADM và t/giác HDC
có: \(\widehat{MAD}=\widehat{DHC}=90^0\)
AD = HD (vì t/giác ABD = t/giác HBD)
\(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)
=> t/giác ADM = t/giác HDC (g.c.g)
=> AM= HC (2 cạnh t/ứng)
Mà AB + AM = BM
BH + HC = BC
và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)
=> BM = BC => t/giác AMC cân tại B
=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)
Ta có: AB = HB (vì t/giác ABD = t/giác HBD)
=> t/giác ABH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)
Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)
Mà 2 góc này ở vị trí đồng vị
=> CM // AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2=100-64=36\)
\(\Rightarrow AB=\sqrt{36}=6\)cm
Vậy AB = 6cm