Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Xét tam giác ABD và tam giác HBD có:
BD: chung.
Góc BAD=BHD=90 độ.
Góc ABD=HBD(Phân giác BD)
=> Tam giác ABD=tam giác HBD(ch-gn)
b/ Gọi giao điểm của BD và AH là O.
Xét tam giác AOB và tam giác HOB có:
BO:chung.
Góc ABO=HBO(Phân giác BD)
BA-BH(cạnh tương ứng của tam giác BAD=BHD)
=>Tam giác AOB=tam giác HOB(c-g-c)
=> Góc AOB=HOB(góc tương ứng)=90 độ
Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)
=> AH//KC
Mà BD vuông góc với AH nên BD cũng vuông góc với KC.
c/Xét tam giác ADK và tam giác HDC có:
DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)
Góc DAK=DHC=90 độ.
Góc ADK=HDC(đối đỉnh)
=> tam giác ADK=tam giác HDC(g-c-g)
=> DK=DC(cạnh tương ứng)
Mà trong tam giác vuông HDC có:
DC là cạnh huyền nên DC>DH
=> DK>DH(đpcm)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AH=AK
Do đó: ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
Em tham khảo tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
b) Xét tam giác vuông ACB và tam giác vuông BDA có:
Cạnh AB chung
\(\widehat{ABC}=\widehat{BAD}\left(=30^o\right)\)
\(\Rightarrow\Delta ACB=\Delta BDA\) (Cạnh huyền góc nhọn)
\(\Rightarrow AD=BC\)
a, Xét tam giác AKC và tam giác AKH có
AK _ chung ; ^KAC = ^KAH
Vậy tam giác AKC = tam giác AKH (ch-gn)
=> KC = KH ( 2 cạnh tương ứng )
b, Xét tam giác KHB vuông tại H
Ta có KH < KB ( cạnh góc vuông < cạnh huyền )
lại có KC = KH (cmt) => KC < KB