Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có
\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)
Do đó: ΔACI~ΔBHI
b: Ta có: ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=25^2-15^2=400\)
=>\(CB=\sqrt{400}=20\left(cm\right)\)
Xét ΔABC có AI là phân giác
nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)
=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)
=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)
mà CI+BI=CB=20cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)
=>\(CI=2,5\cdot3=7,5\left(cm\right)\)
c: Ta có: ΔACI~ΔBHI
=>\(\widehat{CAI}=\widehat{HBI}\)
mà \(\widehat{CAI}=\widehat{BAH}\)
nên \(\widehat{HBI}=\widehat{HAB}\)
Xét ΔHBI vuông tại H và ΔHAB vuông tại H có
\(\widehat{HBI}=\widehat{HAB}\)
Do đó: ΔHBI~ΔHAB
=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)
=>\(HB^2=HI\cdot HA\)
a) Xét tam giác AIC và tam giác BIH có:
\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)
\(\widehat{ACI}=\widehat{BHI}=90^0\)
\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)
Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
a: Xét ΔACI vuông tại C và ΔBIH vuông tại H có
góc AIC=góc BIH
=>ΔAIC đồng dạng với ΔBIH
b: Xét ΔHBI vuông tại H và ΔHAB vuông tại H có
góc HBI=góc HAB
=>ΔHBI đồng dạng với ΔHAB
=>HB/HA=HI/HB
=>HB^2=HA*HI
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có
góc CAI=góc HAB
=>ΔACI đồng dạng với ΔAHB
b: Xét ΔHBI và ΔHAB có
góc HBI=góc HAB
góc H chung
=>ΔHBI đồng dạng với ΔHAB
=>HB/HA=HI/HB
=>HB^2=HA*HI
c: CD/DA=CK/KA=CB/CA
a.
Xét hai tam giác AIC và ABH có:
\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)
b.
Xét hai tam giác AIC và BIH có:
\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)
(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)
c.
Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)
Xét hai tam giác ABC và ACK có:
\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)
(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)