Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABM và tam giác ECM có:
AM = ME (gt)
góc AMB = góc CME ( đối đỉnh)
BM = CM ( M là trung tuyến)
=> tam giác ABM = tam giác ECM ( c.g.c)
b) ???
c) xem SGK
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!