K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

a/ Xét t/g ADE và t/g ADB có

AD : chung

\(\widehat{DAC}=\widehat{DAB}\)  (GT)

AE = AB (GT)

=> t/g ADE = t/g ADB (c.g.c)

=> \(\widehat{AED}=\widehat{ABC}=90^o\)

=> DE ⊥ AC

b/ Xét t/g ABC vuông tại B

\(\widehat{C}+\widehat{BAC}=90^o\)

=> \(\widehat{BAC}=60^o\)

=> \(\widehat{DAC}=\widehat{DAB}=30^o\)

Áp dụng ddl tổng 3 góc vào t/g ADC tính được góc ADC = 60^o

Tự lãm nhé! lạnh lười

c/ Có \(\widehat{ADB}+\widehat{ADC}=180^o\)

=> \(\widehat{ADB}=60^o\)

=> \(\widehat{FDC}=\widehat{ADB}=60^o\)

Xét t/g DFC vuông tại F có

\(\widehat{FDC}+\widehat{DCF}=90^o\)

=>^DCF = ^ACB = 30^o

=> CB là pg góc ACF

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

=>góc ABD=góc EBD

=>BD là phân giác của góc ABE

b: BA=BE

DA=DE

=>BD là trung trực của AE

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a) Ta có: \(BC^2=13^2=169\)

\(AB^2+AC^2=5^2+12^2=169\)

Do đó: \(BC^2=AB^2+AC^2\)(=169)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a: AC=4cm

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó: ΔBAE=ΔBDE

Suy ra: \(\widehat{ABE}=\widehat{DBE}\)

hay BE là tia phân giác của góc ABC

c: Ta có: ΔBAE=ΔBDE

nên EA=ED

mà ED<EC

nên EA<EC

d: Ta có: BA=BD

nên B nằm trên đường trung trực của AD(1)

Ta có: EA=ED

nên E nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BE là đường trung trực của AD

13 tháng 8 2022

Bài 1:

a, Ta có: ΔABC vuông tại A (gt)

=> BC2 = AB2 + AC2

=> AC2 = BC2 - AB2

             = 102 - 62

             = 100 - 36

             = 64

=> AC2 = 64

=> AC = 8 cm

b, Vì 6 cm < 8 cm < 10 cm 

=> AB < AC < BC

=> ˆACB<ˆABC<ˆBAC