Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình dễ tự vẽ nhé bạn
a ) Do \(DH\perp AC\Rightarrow\widehat{AHD}=90^o\)
Xét \(\Delta ABD\) và \(\Delta AHD\) có :
\(\widehat{BAD}=\widehat{HAD}\) ( AD là tia p/g )
AD là cạnh chung
\(\widehat{ABD}=\widehat{AHD}\left(=90^o\right)\)
nên \(\Delta ABD=\Delta AHD\left(g.c.g\right)\)
b ) Gọi K là giao điểm của BH và AD
Xét \(\Delta BAK\)và \(\Delta HAK\) có :
AB = AH ( do \(\Delta ABD=\Delta AHD\))
\(\widehat{BAK}=\widehat{HAK}\) ( AD là tia p/g )
AK là cạnh chung
nên \(\Delta BAK=\Delta HAK\left(c.g.c\right)\)
=> BK = HK ( 1 )
=> \(\widehat{AKB}+\widehat{AKH}=180^o\) ( hai góc kề bù )
\(\widehat{AKB}+\widehat{AKB}=180^o\)
\(\widehat{AKB}.2=180^o\)
\(\Rightarrow\widehat{AKB}=\frac{180^o}{2}=90^o\) ( 2 )
Từ ( 1 ) và ( 2 ) => AD là đường trung trực của BH
c ) Xét \(\Delta BDI\) và \(\Delta HDC\) có :
\(\widehat{DBI}=\widehat{DHC}\left(=90^o\right)\)
BD = HD ( do \(\Delta ABD=\Delta AHD\) )
\(\widehat{BDI}=\widehat{HDC}\) ( hai góc đối đỉnh )
nên \(\Delta BDI=\Delta HDC\left(g.c.g\right)\)
=> DI = DC
=> \(\Delta DIC\)cân tại D
e ) Gọi M là điểm AD cắt IC
Ta có :
AI = AB + BI
AC = AH + HC
mà AB = AH ( \(\Delta ABD=\Delta AHD\))
BI = HC ( \(\Delta BDI=\Delta HDC\) )
=> AI = AC
=> \(\Delta AIC\) cân tại A
Lại có : \(CB\perp AI\)=> CB là đường cao ứng với cạnh AI
\(IH\perp AC\)=> IH là đường cao ứng với cạnh AC
=> AM là đường cao thứ ba ( hay AD )
=> AM \(\perp\)IC
=> \(AD\perp IC\)
Tớ bổ sung ý d) cho Đường Tịch nè:
Ta có : tam giác DIC cân tại D
=> ID = DC
Mà BD = HD (cmt)
=> BD = HD
Mà ta có BC = BD + DC
IH = ID + DH
=> BC = IH
Xét tam giác vuông HIC và tam giác vuông BCI ta có :
BC = IH
IC chung
IBC = CHI = 90 độ
=> Tam giác HIC = tam giác BCI ( g.c.g)
=> BI = HC (tg ứng)
Xét tam giác AKB và tam giác AKH ta có
=> BAD = HAD ( AD là pg)
AK chung
AKB = AKH = 90 độ
=> Tam giác AKB = tam giác AKH (g.c.g)
=> AB = AK
Mà AI = AK + BI
AC = AH + HC
=> AI = AC
=> AIC cân tại A
=> AIC = ACI
Ta có AIC = ACI = 180 - A
Ta có AK = AH (cmt)
=> Tam giác BAH cân tại B
=> ABH = AHB
=> ABH = AHB = 180 - A
=> ABH = AHB = AIC = ACI ( cùng bằng 180 - A)
=> ABH = AIC
Mà 2 góc này ở vị trí đồng vị
=> BH //IC
=> (dpcm)
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)
BD cạnh chung
góc ABD= góc BHD( =90 độ)
=> tam giác ABD= tam giác BDH( g.c.g)
=> AD=DH( 2 cạnh tương ứng)
b) mk ki bt làm
c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)
Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)
=> góc HKB= góc ACB (cùng phụ vs góc B)
=> góc AKD = góc HCD
Xét tam giác ADK và tam giác HDC có:
góc AKD = góc HCD(cmt)
AD=DH( c/m câu a)
góc KAD= góc DHC( = 90 độ)
=> tam giác ADK= tam giác HDC( g.c.g)
=> AK=HC( 2 cạnh tương ứng)
Mà BA= BH( tam giác ABD= tam giác BDH)
BA+ AK= BK , BH+HC= BC
=> BK=BC
=> tam giác KBC cân tại B( đpcm)
a) Xét tam giacd ABD và tam giác HBD có :
góc ABD = góc HBD ( vì BD là tia phân giác )
BD : cạnh chung
Góc BAD = góc BHD = 90 độ
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> AD = DH ( cặp cạnh tương ứng )
b) Xét tam giác HDC có :
góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )
=> DC > DH ( vì DC là cạnh đối diện với góc vuông )
mà AD = DH ( câu a)
=> AD < DC ( đpcm )
c) Vì AB = BH ( vì tam giác ABD = tam giác HBD )
=> tam giác ABH cân
Xét tam giác ADK và tam giác HDC có
AD = DH ( vì tam fiacs ABD = tam giác HBD )
góc KAD = góc CHD = 90
Góc ADK = góc HDC ( đối đỉnh )
=> tam giác ADK = tam giác HDC ( g-c-g )
=> AK = HC ( cặp cạnh tương ứng )
mà AB + AK = BK
BH + CH = BD
Mà AB = BH (cmt )
=> BK = BC
=> tam giác KBC cân (đpcm )
Hình (tự vẽ)
Xét hai tam giác vuông ABD và AHD có:
\(\widehat{BAD}=\widehat{HAD}\)(AD là phân giác)
AD: cạnh chung
Do đó: ΔABD = ΔAHD (cạnh huyền - góc nhọn)
⇒ BD = DH (cạnh tương ứng)
Xét hai tam giác vuông BID và HCD có:
BD = HD (cmt)
\(\widehat{BID}=\widehat{HCD}\)(đối đỉnh)
Do đó: ΔBID = ΔHCD (cạnh góc vuông - góc nhọn kề)
⇒ DI = DC (hai cạnh tương ứng)
⇒ DIC cân tại D.