K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

13 tháng 4 2018

a) xét tam giác ABK và CKD có

AK=KC (vì k là trung điểm của AC)

BK=KD (gt)

góc BKA=DKC (đối đỉnh)

=>tam giác ABK=CKD

b) ta có \(\widehat{ABK}=\widehat{CKD}\)(2 góc tương ứng)

mà 2 góc ở vị trí SLT

nên AB//CD

mà AB=CD (2 cạnh tương ứng)

nên tứ giác ABCD là hình bình hành

+xét \(\Delta ABC\)vuông tại B có đường trung tuyến ứng với cạnh huyền

nên BK=AK=KC

mà BK=KD

=>AK=BK=CK=DK

ta có AK+CK=BK+DK hay BD=AC

xét hình bình hành ABCD có hai đường chéo AC=BD nên ABCD là hình chữ nhật

+xét \(\Delta ABH\)\(\Delta DCH\)

BH=CH(gt)

AB=CD(cmt)

\(\widehat{ABH}=\widehat{DCH}=90^o\)(vì ABCD là HCN)

=>\(\Delta ABH=\Delta DCH\)=>\(\widehat{AHB}=\widehat{DHC}\)(2 góc tương ứng)

c)vì BK=CK => tam giác BKC cân

=>góc KBH=KCH

xét \(\Delta BMH\)\(\Delta CNH\)có 

góc KBH=KCH(cmt)

góc AHB=DHC(cmt)

BH=CH (gt)

=>\(\Delta BMH=\Delta CNH\)

    =>MH=NH

xét tam giác MHN có 

MH=NH=> MHN cân tại H

25 tháng 1 2020

hình vẽ bạn tự vẽ:

a) Xét ΔABKΔABK và ΔCDKΔCDK ta có:

KB = KC (gt) (1)

ABKˆABK^ = CDKˆCDK^ (2 góc đối đỉnh) (2)

KD = KA (gt) (3)

Từ (1),(2),(3) ⇒⇒ ΔABC=ΔCDAΔABC=ΔCDA(C-G-C) (4)

Từ (4) ⇒ABCˆ⇒ABC^ = DCBˆDCB^ (2 góc tương ứng)

và đây là cặp góc so le trong

⇒CD⇒CD // AB (5)

b) Ta có: AB ⊥AC⊥AC

CD // AB (5)

⇒AC⊥CD⇒AC⊥CD

Từ (4) ⇒AB=CD⇒AB=CD( 2 cạnh tương ứng) (6)

Xét hai tam giác vuông ABH và CDH ta có:

AB = CD (6)

HA = HC (gt) (7)

Vậy ΔABH=ΔCDHΔABH=ΔCDH (cạnh góc vuông-cạnh góc vuông) (8)

c) Xét hai am giác vuông ABC và CDA ta có:

AB = CD (6)

AC là cạnh góc vuông chung

Vậy ΔABC=ΔCDAΔABC=ΔCDA (cạnh góc vuông-cạnh góc vuông) (9)

Từ (8) ⇒⇒ BCAˆBCA^ = DACˆDAC^ (2 góc tương ứng) (10)

Từ (7) ⇒BHAˆ⇒BHA^ = DHCˆDHC^ (2 góc tương ứng) (11)

Xét ΔAMHΔAMH và ΔCNHΔCNH ta có:

BHAˆBHA^ = DHCˆDHC^ (11)

HA = HC (gt) (7)

BCAˆBCA^ = DACˆDAC^ (10)

Từ (11),(7),(10) ⇒ΔAMH=ΔCNH⇒ΔAMH=ΔCNH (G-C-G) (12)

Từ (12) ⇒HM=HN⇒HM=HN (2 cạnh tương ứng)

nên ΔHMNΔHMN là tam giác cân

Cop nhớ ghi nguồn bạn ơi!

Đã cop thì cũng phải chỉnh sửa cho giống chứ @@

10 tháng 7 2019

A B C K D H M N

a, xét tam giác AKB và tam giác DKC có : AK = KD (gt)

BK = CK do K là trung điểm của BC (gt)

góc AKB = góc DKC (đối đỉnh)

=> tam giác AKB = tam giác DKC (c-g-c)

=> góc CDK = góc KAB (đn) mà 2 góc này so le trong

=>  CD // AB (tc)

b,  tam giác ABC vuông tại A (gt) => góc BAC = 90 (đn)

CD // AB (Câu a) mà góc BAC trong cùng phía với góc ACD => góc BAC + góc ACD = 180 (đl)

=> góc ACD = 180 - 90 = 90 

=> góc ACD = góc BAC = 90

xét tam giác ABH và tam giác CDH có : AH = HC do H là trung điểm của AC (gt)

CD = AB do tam giác AKB = tam giác DKC (Câu a)

=> tam giác ABH = tam giác CDH (2cgv) 

c,  tam giác ABH = tam giác CDH (Câu b)

=> góc CDH = góc ABH (đn)

tam giác CDH vuông tại C => góc CHD + góc CDH = 90

tam giác ABH vuông tại A => góc ABH + góc AHB = 90

=> góc CHD = góc AHB (1)

xét tam giác ABC và tam giác CDA có : AC chung

góc BAC = góc DCA = 90 

AB = CD (câu b) 

=> tam giác ABC = tam giác CDA (2cgv)

=> góc ACB = góc CAD (đn)    (2)

tam giác HNC và tam giác HMA có : AH = HC (câu b)  và (1)(2)

=> tam giác HNC = tam giác HMA (g-c-g)

=> HN = HM (đn)

=> tam giác HNM cân tại H (đn)

28 tháng 11 2019

Bạn tham khảo tại đây nhé: 

https://h.vn/hoi-dap/question/75003.html

À, bạn Sooya vẽ hình đúng đó bạn xem đi chứ mình ko biết cách đăng hình 😛

Câu b của bài này có 2 cách, nhưng cách ở link trên đúng hơn, đây là cách 2 của mình làm, bạn chọn cách nào tùy bạn nhưng mình nghĩ bạn đừng nên chọn cách của mình:))

b) Ta có: CD//AB (câu a) => góc DBC = góc ACB (so le trong)

Suy ra: AC//BD (có hai góc ở vị trí so le trong)

Tứ giác ABDC có: CD//AB (câu a) và AC//BD (cmt)

=> AC=BD và CD=AB

Do đó: góc BDC = 90°

Xét hai tam giác vuông ABH và CDH có:

AB=CD (cmt)

AH=HC (H là trung điểm AC)

=> tam giác ABH = tam giác CDH (2cgv)

*ko biết mấy cái t/c mình làm trong bài bạn có học chưa nữa, nhưng mà mình làm chỉ để bạn tham khảo thôi nha, làm cách trong link kia í*

3 tháng 4 2016

giải hộ mk câu b và câu c nha mấy bạn.Cám ơn rất nhiều

3 tháng 4 2016

Số học sinh lớp 6A và lớp 6B là 2/3 hay là 8/12

Khi tăng số học sinh lớp 6A thêm 8 bạn, lớp 6B lên 4 bạn thì tỉ số là 3/4 hay là 9/12

vậy lớp 6 A thêm số học sinh hơn lớp 6B là 8 - 4 = 4 bạn

4 bạn ứng với số phần là: 9/12 - 8/12 = 1/12

Lớp 6A có số học sinh là: 4x 12 - 8 = 40 (hs)

Lớp 6B có số học sinh là: 40x 3 : 2= 60 (hs)

9 tháng 4 2016

tam giác ABK=tam giác CDK (c-g-c)

=>góc abc = góc bcd

=>cd//ab

là câu a

9 tháng 4 2016

còn câu b thì: 

ab=dc

góc bah= góc dch

ah=hc

=>tam giác abh = tam giác cdh

24 tháng 3 2016

Bài này dễ mà bạn