Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) xét tam giác ABK và CKD có
AK=KC (vì k là trung điểm của AC)
BK=KD (gt)
góc BKA=DKC (đối đỉnh)
=>tam giác ABK=CKD
b) ta có \(\widehat{ABK}=\widehat{CKD}\)(2 góc tương ứng)
mà 2 góc ở vị trí SLT
nên AB//CD
mà AB=CD (2 cạnh tương ứng)
nên tứ giác ABCD là hình bình hành
+xét \(\Delta ABC\)vuông tại B có đường trung tuyến ứng với cạnh huyền
nên BK=AK=KC
mà BK=KD
=>AK=BK=CK=DK
ta có AK+CK=BK+DK hay BD=AC
xét hình bình hành ABCD có hai đường chéo AC=BD nên ABCD là hình chữ nhật
+xét \(\Delta ABH\)và\(\Delta DCH\)có
BH=CH(gt)
AB=CD(cmt)
\(\widehat{ABH}=\widehat{DCH}=90^o\)(vì ABCD là HCN)
=>\(\Delta ABH=\Delta DCH\)=>\(\widehat{AHB}=\widehat{DHC}\)(2 góc tương ứng)
c)vì BK=CK => tam giác BKC cân
=>góc KBH=KCH
xét \(\Delta BMH\)và\(\Delta CNH\)có
góc KBH=KCH(cmt)
góc AHB=DHC(cmt)
BH=CH (gt)
=>\(\Delta BMH=\Delta CNH\)
=>MH=NH
xét tam giác MHN có
MH=NH=> MHN cân tại H
hình vẽ bạn tự vẽ:
a) Xét ΔABKΔABK và ΔCDKΔCDK ta có:
KB = KC (gt) (1)
ABKˆABK^ = CDKˆCDK^ (2 góc đối đỉnh) (2)
KD = KA (gt) (3)
Từ (1),(2),(3) ⇒⇒ ΔABC=ΔCDAΔABC=ΔCDA(C-G-C) (4)
Từ (4) ⇒ABCˆ⇒ABC^ = DCBˆDCB^ (2 góc tương ứng)
và đây là cặp góc so le trong
⇒CD⇒CD // AB (5)
b) Ta có: AB ⊥AC⊥AC
CD // AB (5)
⇒AC⊥CD⇒AC⊥CD
Từ (4) ⇒AB=CD⇒AB=CD( 2 cạnh tương ứng) (6)
Xét hai tam giác vuông ABH và CDH ta có:
AB = CD (6)
HA = HC (gt) (7)
Vậy ΔABH=ΔCDHΔABH=ΔCDH (cạnh góc vuông-cạnh góc vuông) (8)
c) Xét hai am giác vuông ABC và CDA ta có:
AB = CD (6)
AC là cạnh góc vuông chung
Vậy ΔABC=ΔCDAΔABC=ΔCDA (cạnh góc vuông-cạnh góc vuông) (9)
Từ (8) ⇒⇒ BCAˆBCA^ = DACˆDAC^ (2 góc tương ứng) (10)
Từ (7) ⇒BHAˆ⇒BHA^ = DHCˆDHC^ (2 góc tương ứng) (11)
Xét ΔAMHΔAMH và ΔCNHΔCNH ta có:
BHAˆBHA^ = DHCˆDHC^ (11)
HA = HC (gt) (7)
BCAˆBCA^ = DACˆDAC^ (10)
Từ (11),(7),(10) ⇒ΔAMH=ΔCNH⇒ΔAMH=ΔCNH (G-C-G) (12)
Từ (12) ⇒HM=HN⇒HM=HN (2 cạnh tương ứng)
nên ΔHMNΔHMN là tam giác cân
Cop nhớ ghi nguồn bạn ơi!
Đã cop thì cũng phải chỉnh sửa cho giống chứ @@
A B C K D H M N
a, xét tam giác AKB và tam giác DKC có : AK = KD (gt)
BK = CK do K là trung điểm của BC (gt)
góc AKB = góc DKC (đối đỉnh)
=> tam giác AKB = tam giác DKC (c-g-c)
=> góc CDK = góc KAB (đn) mà 2 góc này so le trong
=> CD // AB (tc)
b, tam giác ABC vuông tại A (gt) => góc BAC = 90 (đn)
CD // AB (Câu a) mà góc BAC trong cùng phía với góc ACD => góc BAC + góc ACD = 180 (đl)
=> góc ACD = 180 - 90 = 90
=> góc ACD = góc BAC = 90
xét tam giác ABH và tam giác CDH có : AH = HC do H là trung điểm của AC (gt)
CD = AB do tam giác AKB = tam giác DKC (Câu a)
=> tam giác ABH = tam giác CDH (2cgv)
c, tam giác ABH = tam giác CDH (Câu b)
=> góc CDH = góc ABH (đn)
tam giác CDH vuông tại C => góc CHD + góc CDH = 90
tam giác ABH vuông tại A => góc ABH + góc AHB = 90
=> góc CHD = góc AHB (1)
xét tam giác ABC và tam giác CDA có : AC chung
góc BAC = góc DCA = 90
AB = CD (câu b)
=> tam giác ABC = tam giác CDA (2cgv)
=> góc ACB = góc CAD (đn) (2)
tam giác HNC và tam giác HMA có : AH = HC (câu b) và (1)(2)
=> tam giác HNC = tam giác HMA (g-c-g)
=> HN = HM (đn)
=> tam giác HNM cân tại H (đn)
Bạn tham khảo tại đây nhé:
https://h.vn/hoi-dap/question/75003.html
À, bạn Sooya vẽ hình đúng đó bạn xem đi chứ mình ko biết cách đăng hình 😛
Câu b của bài này có 2 cách, nhưng cách ở link trên đúng hơn, đây là cách 2 của mình làm, bạn chọn cách nào tùy bạn nhưng mình nghĩ bạn đừng nên chọn cách của mình:))
b) Ta có: CD//AB (câu a) => góc DBC = góc ACB (so le trong)
Suy ra: AC//BD (có hai góc ở vị trí so le trong)
Tứ giác ABDC có: CD//AB (câu a) và AC//BD (cmt)
=> AC=BD và CD=AB
Do đó: góc BDC = 90°
Xét hai tam giác vuông ABH và CDH có:
AB=CD (cmt)
AH=HC (H là trung điểm AC)
=> tam giác ABH = tam giác CDH (2cgv)
*ko biết mấy cái t/c mình làm trong bài bạn có học chưa nữa, nhưng mà mình làm chỉ để bạn tham khảo thôi nha, làm cách trong link kia í*
Số học sinh lớp 6A và lớp 6B là 2/3 hay là 8/12
Khi tăng số học sinh lớp 6A thêm 8 bạn, lớp 6B lên 4 bạn thì tỉ số là 3/4 hay là 9/12
vậy lớp 6 A thêm số học sinh hơn lớp 6B là 8 - 4 = 4 bạn
4 bạn ứng với số phần là: 9/12 - 8/12 = 1/12
Lớp 6A có số học sinh là: 4x 12 - 8 = 40 (hs)
Lớp 6B có số học sinh là: 40x 3 : 2= 60 (hs)