K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

7 tháng 8 2019

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật       

19 tháng 12 2021

a: Xét tứ giác AHDK có 

\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)

Do đó: AHDK là hình chữ nhật

6 tháng 1 2021

 

a)Xét tứ giác AFDE có :góc AED = 90°(gt)góc EAF = 90 °(gt)góc AFD =90 °(gt)=> Tứ giác AFDE là hình chữ nhật ( dhnb)(đcpcm)

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

16 tháng 11 2021

giải cho em với với ạ , giải rõ ra ạ :))

 

16 tháng 11 2021

 

 

 

 

13 tháng 11 2021

a: Xét tứ giác AEDF có

AE//DF

DE//AF

Do đó: AEDF là hình bình hành

mà \(\widehat{DAE}=90^0\)

nên AEDF là hình chữ nhật

13 tháng 11 2021

a, Vì DE//AB nên DE⊥AC và DF//AC nên DF⊥AB

Vì \(\widehat{AED}=\widehat{AFD}=\widehat{EAF}=90^0\) nên AEDF là hcn

b,Vì E là trung điểm MD và AC nên AMCD là hbh

Mà AC⊥DE nên AMCD là hthoi

c, Vì D là trung điểm BC và AK và \(\widehat{BAC}=90^0\) nên ABKC là hcn

Để ABKC là hv thì AB=AC hay tam giác ABC vuông cân tại A

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi