Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK ko có tài năng hội họa nên hình hơi xấu nha.
a,ta có\( AK=KC\)
mặt \(\not=\): \(AB=BC\) và \(BK\) chung nên \(\Delta ABK=\Delta CBK (c.c.c)\)
b,C1: với những bạn đã học về tam giác cân
ta có: AB=BC. \(\angle B=90^0\) \(\Rightarrow \Delta ABC\) vuông cân tại B có BK là trung tuyến nên BK cũng là đường cao
C2: với những bạn chưa học đến :
b, ta có \(\Delta ABK=\Delta CBK (c.c.c)\)( cm trên)
\(\Rightarrow \angle K_1=\angle K_2\) mà \(\angle K_1+ \angle K_2=180^o\Rightarrow 2\angle K_1=180^o\Rightarrow \angle K_1=90^o\)
Suy ra \(BK \bot AC\)
c,\(CM\bot AC\) mà \(BK\bot AC\Rightarrow CM//BK\)
mà tiện cho mk hỏi luôn là làm sao bấm được dấu góc vậy? dấu song song nữa ( trong Latex nha)
Hình bạn tự vẽ nha ~~~
Bài làm :
a) Xét tam giác BKA và tam giác BKC có :
BA = BC (gt)
AK = CK (gt)
BK là cạnh chung
=> \(\Delta\)BKA = \(\Delta\)BKC (c-c-c)
b) Vì \(\Delta\)BKA = \(\Delta\)BKC (theo câu a)
Ta có : góc BKA = góc BKC (2 góc tương ứng) (1)
góc BKA + BKC = 1800
Từ (1) ta có : 2 góc BKA = 1800 => góc BKA =900
=> BK vuông góc với AC
a) Ta có: AB = BC (gt)
\(\Rightarrow\Delta BAC\)cân Tại B
\(\Rightarrow\widehat{BAK}=\widehat{BCK}\)
Xét \(\Delta BAK\)và \(\Delta BCK\)có:
\(AB=BC\left(gt\right)\)
\(\widehat{BAK}=\widehat{BCK}\left(cmt\right)\)
\(AK=KC\)(vì K là trung điểm của AC)
\(\Rightarrow\Delta BAK=\Delta BCK\left(c-g-c\right)\)
b) Ta có: \(\widehat{AKB}=\widehat{CKB}\)( 2 góc tương ứng của tam giác BKA và tg BKC)
và \(\widehat{AKB}+\widehat{CKB}=180^o\)(2 góc kề bù)
Hay \(2\widehat{AKB}=180^o\)
\(\Rightarrow\widehat{AKB}=90^o\)
\(\Rightarrow BK\perp AC\)
hok tốt!!!
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
a. Vì K là trung điểm của AC
=> AK = KC
Từ \(\Delta BAK\)và \(\Delta BKC\), TA CÓ:
BK: cạnh chung
AK = KC
AB = BC
\(\Rightarrow\Delta BAK=\Delta BKC\)( C.C.C )
B , Ta có : \(\widehat{AKB}\)VÀ \(\widehat{CKB}\)KỀ BÙ
Mà \(\widehat{BKA}\)\(=BKC\)
=> BK \(\perp\)AC
c , tự làm
a: Xét ΔBAE và ΔBME có
BA=BM
AE=ME
BE chung
=>ΔBAE=ΔBME
b: Xet ΔBAK và ΔBMK có
BA=BM
góc ABK=góc MBK
BK chung
=>ΔBAK=ΔBMK
=>góc BMK=90 độ
=>MK vuông góc AC
c: Xét tứ giác KFMQ có
MF//KQ
MF=KQ
=>KFMQ là hình bình hành
=>MQ//FK
=>góc CMQ=góc CBK=góc ABK
+) Xét \(\Delta ABC\)có:
\(AB=AC\)(giả thiết)
\(\Rightarrow\Delta ABC\)cân tại A
Mà có AD là đường trung tuyến( vì D là trung điêm cạnh BC)
nên AD cũng là đường cao, cũng là đường trung trực và cũng là đường phân giác của \(\Delta ABC\)
a) Xét \(\Delta ABD\)và \(\Delta ACD\)ta có:
\(AB=AC\)(giả thiết)
\(BD=CD\)(vì D là trung điểm của BC)
\(AD\)là cạnh chung
Vậy \(\Delta ABD=\Delta ACD\left(c-c-c\right)\)
b) +)Ta có : AD là đường cao của \(\Delta ABC\)(chứng minh trên)
\(\Rightarrow AD\perp BC\)
+) Xét \(\Delta IBD\)và \(\Delta ICD\) ta có:
\(BD=CD\)(vì D là trung điểm của BC)
\(ID\)là cạnh chung
\(\widehat{IDB}=\widehat{IDC}=90^0\)(vì \(AD\perp BC\))
vậy \(\Delta IBD=\Delta ICD\)(Cạnh góc vuông-cạnh góc vuông)
\(\Rightarrow IB=IC\)(Hai cạnh tương ứng)
c) +) Xét \(\Delta ADC\)vuông tại D(vì \(AD\perp BC\)) ta có:
\(\widehat{DAC}+\widehat{ACD}=90^0\)(trong tam giác vuông HAi góc nhọn phụ nhau) (1)
+) Xét \(\Delta BKC\)vuông tại K ta có:
\(\widehat{KBC}+\widehat{KCB}=90^0\)(trong tam giác vuông hai góc nhọn phụ nhau) (2)
Từ (1) và (2) ta có:
\(\widehat{DAC}+\widehat{ACD}\)=\(\widehat{KBC}+\widehat{KCB}\)(vì cùng bằng 90 độ)
Mà \(\widehat{ACD}=\widehat{KCB}\)(vì cùng là góc \(ACB\))
nên \(\widehat{DAC}=\widehat{KBC}\)
Hay \(\frac{1}{2}.\widehat{BAC}=\widehat{KBC}\)(vì AD là phân giác của tam giác ABC)
\(\Rightarrow\widehat{BAC}=2.\widehat{KBC}\)
Hay \(\widehat{BAC}=2.\widehat{IBC}\)
(Chúc học tốt)
* Nên ghi rõ đề ra nha bạn ( có vài ý là mình bổ sung vào ) *
a) Xét \(\Delta ABO\)và \(\Delta AEO\)ta có:
\(\widehat{A_1}=\widehat{A_2}\)
\(\widehat{AOB}=\widehat{ACE}\left(=90^o\right)\)
\(\text{AD chung}\)
\(\Rightarrow\Delta ABO=\Delta AEO\text{ }\)\(\text{(*)}\)
b) Từ \(\text{(*)}\)\(\Rightarrow AB=AE\)( hai cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
c) Từ \(\text{(*)}\)\(\Rightarrow OB=OE\)( hai cạnh tương ứng )
Mà \(AD\perp BE\Rightarrow AD\)là đường trung trực của \(BE\)
d) Xét \(\Delta ABE\)ta có:
\(AO\)và \(BK\)là đường cao cắt nhau tại \(M\)
\(\Rightarrow M\)là trực tâm của tam giác
\(\Rightarrow EM\)là đường cao của tam giác
\(\Rightarrow ME\perp AB\)mà \(AB\perp BC\)
\(\Rightarrow ME//BC\)
Dễ mà bạn
dễ thì làm đi