Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a. Gọi G là trung điểm AD
Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
\(CD=BC-BD=40\left(cm\right)\)
Trong tam giác vuông BDI:
\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)
Trong tam giác vuông CDK:
\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)
\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)
b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)
\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADM:
\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)
\(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)
\(AI=AB-BI=50\left(cm\right)\)
Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)
Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)
Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)
Hai tam giác vuông AGF và AKD đồng dạng
\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)
\(\Rightarrow DF=AF=35\left(cm\right)\)
\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)