K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

A B H C

AD định lí Pytago vào tam giác vuông HAC , ta có 

\(AH=\sqrt{AC^2-HC^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Ta có sin C = AH/ AC = 3/5 

=> \(\widehat{C}\approx36^o52'\)

=> \(\widehat{B}=90^o-\widehat{C}\approx90^o-36^o52'=53^o8'\)

BH = cot B . AH \(\approx2,25\left(cm\right)\) 

=> BC = BH + CH = 2,25 + 4 = 6, 25 cm

AB = sin C. BC \(\approx3,75\left(cm\right)\)

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

7 tháng 4 2020

a) A,D,C C (O;AD)

=> DC _|_ CA

b) A,B,D C (O;AD)

=> BD _|_ AB

\(\Rightarrow\hept{\begin{cases}BD//CH\left(\perp AB\right)\\BH//CD\left(\perp AC\right)\end{cases}}\)

=> BHCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}BH=DC\\BD=HC\end{cases}}\)

c) Gọi I là giao BC và AD => AI là đường trung tuyến của tam giác ABC và AHD

Mà trọng tâm của tam giác ABC và AHD đều thuộc AI và thỏa mãn \(\frac{AG}{AI}=\frac{2}{3}\)

=> 2 tam giác này cùng trọng tâm

17 tháng 9 2018

a) Ta có: 

ˆABD=ˆCBD=\(\frac{\widehat{ABC}}{2}\)=120: 2=60

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60(so le trong)

ˆCBD=ˆAEB=60 (đồng vị)

Suy ra tam giác ABE  đều 

⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

\(\frac{BC}{CE}\)=\(\frac{DC}{AE}\)⇒BD=\(\frac{BC.AE}{CE}\)=\(\frac{12.6}{18}\)=4(cm)

b) Ta có: 

MB=MC=\(\frac{1}{2}\).BC=\(\frac{1}{2}\).12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

tk mik nha

31 tháng 7 2020

C M B E D A

a) Ta có: 

\(\widehat{ABD}=\widehat{CBD}=\frac{\widehat{ABC}}{2}=\frac{120^o}{2}=60^o\)

Từ A kẻ đường thẳng song song với BD cắt CB tại E 

Lại có:

\(\widehat{BAE}=\widehat{ABD}=60^o\) ( so le trong ) 

\(\widehat{CBD}=\widehat{AEB}=60^o\) ( đồng vị )

Suy ra tam giác ABE  đều 

=> AB = BE = EA = 6 ( cm ) (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 ( cm )

Tam giác ACE có AE // BD nên suy ra :

\(\frac{BC}{CE}=\frac{BD}{AE}\)

\(\Rightarrow BD=\frac{BC.AE}{CE}=\frac{12.6}{18}=4\left(cm\right)\)

b) Ta có: 

\(MB=MC=\frac{1}{2}.BC=\frac{1}{2}.12=6\left(cm\right)\left(2\right)\)

Từ (1) và (2) suy ra:

BM = AB => Tam giác ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao ( tính chất tam giác cân )

 Vậy \(BD\perp AM\)


 

19 tháng 7 2018

Bài 1:

B A C H D

              \(BC=CD+BD=68+51=119\)

\(AD\)là phân giác  \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay     \(\frac{51}{AB}=\frac{68}{AC}\)

\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)

suy ra:    \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)

ÁP dụng hệ thức lượng ta có:

           \(AB^2=BH.BC\)

\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)

\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)

19 tháng 7 2018

Bài 2:

B A C H

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)

\(\Leftrightarrow\)\(BH=4,5\)

Áp dụng hệ thức lượng ta có:

       \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)

       \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)

b)   \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)

      \(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)