K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

=>DB=DE
b: Xét ΔAEK vuông tại E và ΔABC vuông tại B có

AE=AB

góc EAK chung

=>ΔAEK=ΔABC

=>AK=AC

=>ΔAKC cân tại A

22 tháng 4 2023

K sao lại là giao điểm  của ED và AB đc

a: BC=căn 5^2-3^2=4cm

b: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

c: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có

DB=DE

góc BDK=góc EDC

=>ΔDBK=ΔDEC

=>DK=DC

=>ΔDKC cân tại D

3 tháng 1 2019

a, CM tam giác ACH = tam giác KCH

Xét tam giác ACH và tam giác KCH, có:

- AH = KH (H là trung điểm AK)

- góc AHC = góc KHC = 90 độ

- cạnh HC chung

=> tam giác ACH = tam giác KCH (đpcm)

b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC

Xét tam giác AEC và tam giác DEB, có:

- AE = DE (giả thiết)

- BE = CE (E là trung điểm BC)

- góc AEC = góc DEB (2 góc đối nhau)

=> tam giác AEC = tam giác DEB

=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)

=> DB // AC  (so le trong) (đpcm)

c, EB là phân giác của góc AEK

Xét tam giác EHA và tam giác EHK, có:

- EH chung

- góc EHA = góc EHK = 90 độ

- HA = HK (H là trung điểm AK)

=> tam giác EHA = tam giác EHK

=> EA = EK => tam giác EAK cân tại E

mà H là trung điểm AK

=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK

Ta có EH là phân giác của góc AEK

mà B,H,E thẳng hàng

=> EB là phân giác của góc AEK (đpcm)

d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng

(chưa nghĩ ra)

30 tháng 4 2018

bn ơi bn tự vẽ hình nhé chứ mik ko vẽ đc

a/ Xét tam giác BAD và tam giác EAD :

Góc ABD = góc EAD = 90 ĐỘ ( AB VUÔNG BC và DE vuông AC )

AD CHUNG

GÓC BAD = EAD VÌ AD là phân giác của góc BAC

Suy ra tam giác BAD=tam giác EAD (cạnh huyền - góc nhọn )

Suy ra BD = ED (2 cạnh tương ứng )

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

5 tháng 7 2017

A B C D E F

A B C D E

17 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

\(\widehat{BAH}=\widehat{EAH}\)

Do đó: ΔAHB=ΔAHE

b:

Ta có: ΔAHB=ΔAHE

=>AB=AE

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

=>ΔDBE cân tại D

c: Xét ΔBDK và ΔEDC có

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

DK=DC

Do đó: ΔBDK=ΔEDC

=>\(\widehat{KBD}=\widehat{CED}\)

Ta có: ΔBAD=ΔEAD

=>\(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{KBD}\)

\(=\widehat{AED}+\widehat{CED}\)

\(=180^0\)

=>A,B,K thẳng hàng

d: Ta có: ΔDBK=ΔDEC

=>BK=EC

Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)

nên BE//KC