K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)

Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=CH(hai cạnh tương ứng)

Xét tứ giác AKCH có 

AK//CH(\(\perp AC\))

AK=CH(cmt)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: Vì ΔABC vuông tại A

nên A nằm trên (O)

b: ΔOAC cân tại O

mà OI là đường cao

nên OI là phân giác của gócc AOC

Xét ΔOAE và ΔOCE có

OA=OC

góc AOE=góc COE
OE chung

Do đó: ΔOAE=ΔOCE

=>góc OCE=90 độ

=>EC là tiếp tuyến của (O)

Gọi I là giao của AE và CD

AE vuông góc KC

CD vuông góc AK

=>I là trực tâm của ΔACK

=>KI vuông góc AC

=>KI//AB

góc BHD=góc OHC

=>90 độ-góc BHD=90 độ-góc OHC

góc DHI=góc CHI

=>HI là phân giác của góc CHD

HB vuông góc HI

=>HB là phân giác góc ngoài của ΔCHD

BD/BC=HD/HC

=>ID/IC=BD/BC

=>BC/IC=BD/ID

KI//AB//CD

=>AB/KI=AB/ID=BC/IC=AF/IF

ΔKIF đồng dạng vói ΔBAF

=>góc KFI=góc BFA

=>B,K,F thẳng hàng