K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

mình mới lớp 5 thôi à

1 tháng 3 2017

B A C D E 1 2

  1. Xét \(\Delta ABD\) và \(\Delta ADE\left(\widehat{B}=\widehat{E}=90^0\right)\) có:

cạnh AD chung

\(\widehat{A1}=\widehat{A2}\)

Do đó \(\Delta ABD=\Delta ADE\) (cạnh huyền-góc nhọn)

\(\Rightarrow AD=ED\)(2 cạnh tương ứng)

      2. Vì \(\Delta ABE=60^0\Rightarrow\Delta ABE\) là tam giác đều

K CHO MÌNH NHA

1 tháng 3 2017

xét tam giác vuông ABD và tam giác vuông AED có 

AD CHUNG

góc DAB=gócDAE

=>Tam giác ABD=tam giác AED(cạnh huyền góc nhọn)

=>AB=AE

=>tam giác ABE Cân

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.

24 tháng 3 2022

-Lưu ý: Chỉ mang tính chất tóm tắt bài làm, bạn không nên trình bày theo nhé!

a) △ABD và △EBD có: \(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABC}\)) ; BD là cạnh chung ; \(\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\)△ABD=△EBD (c-g-c).

b) △ABD=△EBD (cmt) \(\Rightarrow AB=EB\) \(\Rightarrow\)△ABE cân tại B mà \(\widehat{ABC}=60^0\)

\(\Rightarrow\)△ABE đều.

c) \(\widehat{BAE}+\widehat{EAC}=90^0\Rightarrow60^0+\widehat{EAC}=90^0\Rightarrow\widehat{EAC}=30^0\)

\(\widehat{ABE}+\widehat{ACE}=90^0\Rightarrow60^0+\widehat{ACE}=90^0\Rightarrow\widehat{ACE}=30^0=\widehat{EAC}\)

\(\Rightarrow\)△AEC cân tại E. \(\Rightarrow AE=EC=AB=BE\)

\(\Rightarrow\)E là trung điểm BC và \(AB=\dfrac{1}{2}BC\)

\(\Rightarrow BC=10 \left(cm\right)\)

a) Xét ∆ABD có : 

AH là trung trực đồng thời là trung tuyến 

=> ∆ABD cân tại A 

Mà B = 60° 

=> ∆ABD đều 

b ) Ta có : CAD = BAC - BAD 

= 90° - 60° = 30° 

=> EAD = 30° 

Ta có : ADH = 60° (∆ABD đều)

Ta có : HAD = AHD - ADH =90° - 60° = 30° 

Ta có AH vuông góc với BC 

ED vuông góc với BC 

=> AH//ED 

=> HAD = ADE = 30° ( so le trong)

=> ∆AED cân tại E

15 tháng 7 2019

A B C H D E F

a, xét tam giác AHB và tam giác AHD có : AH chung

góc AHB = góc AHD = 90 do AH là đường cao (gt)

HB = HD (gt)

=> tam giác AHB = tam giác AHD (2cgv)

=> AB = AD (đn)

=> tam giác ABD cân tại A (gt)

mà góc ABC = 60 (gt)

=> tam giác ABD đều (tc)

b,  tam giác AHB = tam giác AHD (câu a)

=> góc HAB = góc HAD (đn)         (1)

xét tam giác AHB vuông tại H => góc HAB = góc HBA = 90 (tc)

mà góc HBA = 60 (gt)

=> góc HAB = 90 - 60 = 30  và (1)

=> góc HAB  = góc HAD = 30         (2)

có tam giác ABD đều (câu a) => góc BAD = 60 (đn)

góc BAD + góc DAC  = góc BAC 

mà góc BAC = 90 (gT)

=> góc DAC = 90 - 60 = 30 (gt)   và (2)

=> góc DAC = góc DAH = 30      (3)

có AH _|_ BC do AH là đường cao (Gt) và ED _|_ BC (gt)

=> AH // ED (tc) 

=> góc EDA = góc DAH  (so le trong)    và (3)

=> góc DAC = góc EDA 

=> tam giác AED cân tại E (tc)

c, tam giác ABD đều (Câu a)

=> góc ABD = góc BAD (đn)

tam giác ABC vuông tại A (gt) => góc ACB + góc ABC = 90 => góc ACB = 90 - ABC 

góc CAD + góc BAD = 90 => góc CAD = 90 - góc BAD 

=> góc CAD = góc ACB 

=> tam giác CAD cân tại D (đn)

=> DA = DC (đn)

xét tam giác CDF và tam giác ADH có : góc CDF = góc ADH (đối đỉnh)

góc CFD = góc AHD = 90 

=> tam giác CDF = tam giác ADH (ch - gn)

=> FC = HA (đn) 

     DF = DH (đn)

=> tam giác DFH cân tại D (đn)

=> góc DFH = (180 - góc FDH) : 2 (tc)      (4)

có góc FDH  + góc HDA = 180 (kb)

mà góc HDA = 60 do tam giác ABD đều )

=> góc FDH = 180 - 60 = 120    và (4)

=> góc DFH = (180 - 120) : 2 = 30 

góc DAH = 30 (câu  b)

=> góc DFH = góc DAH = 30

=> tam giác FHA cân tại H (tc) 

=> HF = HA (đn) mà HA = CF (Cmt)

=> HF = HA = CF

27 tháng 4 2017

sao không ai trả lời hộ thế

16 tháng 6 2017

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD

Suy ra góc ABD = góc EBD

Vậy tam giác ABD = tam giác EBD

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )

Suy ra tam giác ABE cân tại B

Tam giác ABE cân tại B có góc EBA =60 độ

Suy ra tam giác ABE là tam giác đều

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ

Suy ra ACB = 30 độ

Suy ra tam giác ABC là nửa tam giác đều 

Suy ra AB = 1/2 BC

Suy ra BC = 2AB = 2 . 5 = 10 cm

8 tháng 3 2018

B A C 5 30 30 D E  Vẽ xấu nhưng xem tạm thôi nhé!

a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))

Ta có:BD là cạnh chung (1)

\(\widehat{ABD}=\widehat{EBD}\) (gt)  (2)

Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)

b)..............hình như tôi ko bt nx ^^

18 tháng 4 2018

Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa

a ) Phương Hoa lm rồi

b) Vì tam giác ABD = tam giác EBD ( câu a )

=> AB = EB ( cặp cạnh tượng ứng ) 

=> tam giác ABE cân (1)

Mà góc ABE = 60 độ    (2)

Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )

c) Xét tam giác ABK và tam giác EBK có :

BD : cạnh chung

AB = BE ( vì tam giác ABE đều )

góc ABK = góc EBK = 30 độ ( vì BK là phân giác )

=> tam giác ABK = tam giác EBK ( c-g-c )

=> AK = EK ( cặp cạnh tương ứng )

Mà tam giác ABE đều => AB = EB = AE 

=> AB = EB = AE = 5cm

mà AK + EK = AE

=> AK = AE = 2,5 cm

Mà AK = EC 

=> AK = EC = 2,5cm

Vì BE + CE = BC 

=> 5 + 2,5 = BC 

=> BC = 7,5 cm 

Chúc bn học tốt !!!