K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 7 2017
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
21 tháng 6 2019
A B D C M
Nối BM
Xét tam giác BMD vuông tại D, có: BD2 = BM2 - MD2 (1)
Xét tam giác MCD vuông tại D, có: DC2 = MC2- MD2 (2)
Từ (1) và (2) => BD2 - DC2 = BM2- MD2 - MC2 + MD2 = BM2 - MC2 = BM2 - AM2 (vì AM=CM) = AB2
=> AB2 = BD2- DC2 (đpcm)
1: ΔBED vuông tại E
=>DB^2=DE^2+EB^2
=>BE^2=DB^2-DE^2
ΔCED vuông tại E
=>CE^2+ED^2=CD^2
=>CE^2=CD^2-ED^2
BE^2-CE^2
=DB^2-DE^2-CD^2+DE^2
=DB^2-CD^2
2: DB^2-CD^2
=DB^2-AD^2(Do CD=AD)
=AB^2
mà DB^2-DC^2=BE^2-CE^2
nên BE^2-CE^2=AB^2