Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\)và\(\Delta HBD\)có :
- BD cạnh chung
- AB = HB ( gt )
\(\Rightarrow\Delta ABD=\Delta HBD\left(ch-gn\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{HBD}\)( góc tương ứng )
\(\Rightarrow BD\)là tia phân giác\(\widehat{ABC}\)
a) Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra: BC2 = AB2 + AC2
Do đó: \(\Delta ABC\) vuông tại A.
b) Xét hai tam giác vuông ABH và DBH có:
AB = BD (gt)
BH: cạnh huyền chung
Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)
Do đó: BH là tia phân giác của \(\widehat{ABC}\).
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Do đó: \(\Delta ABM\) cân tại M (đpcm).
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)
-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )
- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)
2. Xét tam giác ABH và tam giác ACK có :
AB = AC (tam giác ABC cân tại A)
Góc A chung
góc AKC = góc AHB ( = 90 độ )
=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)
=>AH = AK ( cặp cạnh t/ứng )
Đề có vấn đề bạn ạ!