K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tạiA  và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: BA=BH

DA=DH

=>BD là trung trực của AH

c: Xét ΔDAK và ΔDHC có

DA=DH

góc ADK=góc HDC

DK=DC

=>ΔDAK=ΔDHC

=>góc DAK=góc DHC=90 độ

=>góc DAK+góc DAB=180 độ

=>B,A,K thẳng hàng

2 tháng 5 2023

loading...    

a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:

BD chung

∠ABD = ∠HBD (BD là phân giác của ∠ABH)

⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)

b) Do ∆ABD = ∆HBD (cmt)

⇒ AB = BH (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AH (1)

Do ∆ABD = ∆HBD (cmt)

⇒ AD = HD (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AH

c) Xét ∆ADK và ∆HDC có:

AD = HD (cmt)

∠ADK = ∠HDC (đối đỉnh)

DK = DC (gt)

⇒ ∆ADK = ∆HDC (c-g-c)

⇒ ∠DAK = ∠DHC (hai góc tương ứng)

⇒ ∠DAK = 90⁰

Mà ∠DAB = 90⁰

⇒ ∠DAK + ∠DAB = 180⁰

⇒ B, A, K thẳng hàng

Sửa đề: DH vuông góc với BC

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔHBD(cmt)

nên DA=DH(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

AK=HC(gt)

Do đó: ΔADK=ΔHDC(hai cạnh góc vuông)

Suy ra: DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔBAD=ΔBHD)

và AK=HC(gt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)

TỪ (1) và (2) suy ra BD là đường trung trực của CK

hay BD⊥CK

Xét ΔBKC có 

BD là đường cao ứng với cạnh KC(cmt)

CA là đường cao ứng với cạnh BK(gt)

CA cắt BD tại D(gt)

Do đó: D là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

Suy ra: KD là đường cao ứng với cạnh BC

mà DH là đường cao ứng với cạnh BC(gt)

và KD, DH có điểm chung là D

nên K,D,H thẳng hàng(đpcm)

a: Xet ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔABD=ΔHBD

b: BA=BH

DA=DH

=>BD là trung trực của AH

c: Xét ΔADK và ΔHDC có

DA=DH

góc ADK=góc HDC

DK=DC

=>ΔADK=ΔHDC
=>góc DAK=góc DHC=90 độ

=>góc BAK=90+90=180 độ

=>B,A,K thẳng hàng

a: Xét ΔABD và ΔHBD có 

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔABD=ΔHBD

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔADK=ΔHDC

Suy ra: DK=DC

29 tháng 3 2020

a, xét ΔABDvàΔHBDΔABDvàΔHBD có

AD chung

ABDˆ=HBDˆABD^=HBD^ ( AD là tia phân giác của ABCˆABC^ )

Aˆ=Hˆ=900A^=H^=900

=> ΔΔ ABD = ΔΔHBD ( ch - gn )

b, xét ΔKADvàΔCHDΔKADvàΔCHD có

AK = HC ( gt)

AD = DH ( câu a )

Aˆ=Hˆ=900A^=H^=900

=> ΔAKD=ΔHDCΔAKD=ΔHDC

=> ADKˆ=HDCˆADK^=HDC^ mà 2 góc này ở vị trí đối đỉnh

=> đpcm

a, Xét \(\Delta\)ABD và \(\Delta\)HBD có

AD_chung

^ABD = ^HBD  ( AD là tia p/g của ^ABC )

^A = ^H ( = 900 )

=> \(\Delta\)ABD = \(\Delta\)HBD (ch-gn)

b, Xét \(\Delta\)KAD và \(\Delta\)CHD có

AK = HC (gt)

AD = DH (câu a)

^A = ^H ( = 900 )

=> \(\Delta\)AKD =\(\Delta\)HDC

=> ^ADK = ^HDC (đđ) 

Vậy  3 điểm K,D,H thẳng hàng

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC

=>ΔDKC cân tại D

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

a, Xét △ABD vuông tại A và △HBD vuông tại H

Có: ABD = HBD (gt)

       DB là cạnh chung

=> △ABD = △HBD (ch-gn)

b, Xét △ADK vuông tại A và △HDC vuông tại H

Có: AK = HC (gt)

       AD = HD (△ABD = △HBD)

=> △ADK = △HDC (cgv)

=> ADK = HDC (2 góc tương ứng)

Ta có: CDH + HDA = 180o (2 góc kề bù)

=> ADK + HDA = 180o

=> KDH = 180o

=> 3 điểm K, D, H thẳng hàng.