K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 5 2017
a) +Xét tam giác ABI và tam giá EBI có:
BI là cạnh chung
Góc ABI=Góc EBI( BI là tia phân giác góc B09
BE=BA (gt)
Do đó ; tam giác ABI= tam giác BEI (c.g.c)
Suy ra góc BAI=góc BEI ( 2 góc tương ứng)
+ mà góc BAI= 90 độ
nên góc BEI=90 độ
b) ta có: góc BAI+ DAI=180 ĐỘ ( 2 góc kề bù)
góc BEI+IEC= 180 ĐỘ ( 2 góc kề bù)
Suy ra : góc DAI=IEC
+ Xét tam giác AID và tam giác EIC CÓ:
góc DAI=IEC ( chứng minh trên VÀ CÙNG = 90 ĐỘ)
góc DIA=EIC( 2 GÓC đối đỉnh)
IE=IA( do tam giac ABI= tam giác EIB)
suy raL: tam giác AID= tam giác EIC(CẠNH GÓC VUÔNG- GÓC NHỌN)
ID=IC ( 2 CẠNH tương ứng)
Vậy tam giác IDC cân tại I
c) câu c mình chưa có câu trả lời nhờ mấy bạn sau nha ^_^
1) Xét ΔABI và ΔEBI có
BA=BE(gt)
\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))
BI chung
Do đó: ΔABI=ΔEBI(c-g-c)
Suy ra: \(\widehat{BAI}=\widehat{BEI}\)(hai góc tương ứng)
mà \(\widehat{BAI}=90^0\)(gt)
nên \(\widehat{BEI}=90^0\)
2) Xét ΔAID vuông tại A và ΔEIC vuông tại E có
IA=IE(ΔBAI=ΔBEI)
\(\widehat{AID}=\widehat{EIC}\)(hai góc đối đỉnh)
Do đó: ΔAID=ΔEIC(Cạnh góc vuông-góc nhọn kề)
Suy ra: ID=IC(Hai cạnh tương ứng)
Xét ΔIDC có ID=IC(cmt)
nên ΔIDC cân tại I(Định nghĩa tam giác cân)
3) Ta có: ΔAID=ΔEIC(cmt)
nên AD=EC(Hai cạnh tương ứng)
Xét ΔBDC có
\(\dfrac{BA}{AD}=\dfrac{BE}{EC}\)(Vì BA=BE; AD=EC)
nên AE//DC(Định lí Ta lét đảo)