Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -Xét tứ giác AHMK có:
\(\widehat{AHM}=\widehat{HAK}=\widehat{AKM}=90^0\) nên AHMK là hình chữ nhật.
=>\(AM=HK\) (t/c hình chữ nhật).
b) Gỉa sử \(AM\perp HK\).
- Xét hình chữ nhật AHMK có:
\(AM\perp HK\) (gt)
=>AHMK là hình vuông.
=>AM là tia phân giác của \(\widehat{BAC}\) (t/c hình vuông).
- Vậy điểm M là giao điểm của đường phân giác \(\widehat{BAC}\) với cạnh BC thì
\(AM\perp HK\).
c) - Kẻ \(AM'\perp BC\) tại M'
=>\(AM\ge AM'\) (quan hệ giữa đường vuông góc và đường xiên).
- minAM=AM' ⇔\(AM\perp BC\) tại M.
Mà \(AM=HK\) =>- minHK=AM' ⇔\(AM\perp BC\) tại M.
- Vậy điểm M là chân đường vuông góc kẻ từ A đến BC thì K có độ dài nhỏ nhất.
A B C D H K
a)Ta có:\(HD\perp AH;AK\perp AH\Rightarrow HD//AK\)
Mà\(AK\perp KD\Rightarrow HD\perp KD\)
Suy ra tứ giác AHDK là hình chữ nhật suy ra HK=AD(đpcm)
b)Ta có vì AHDK là hình vuông nên AH=HD=DK=AK
Suy ra tam giác AHD vuông cân tại H
\(\Rightarrow\widehat{HAD}=\widehat{HDA}=45^0\)
\(\Rightarrow\widehat{DAK}=90^0-45^0=45^0\)
\(\Rightarrow\widehat{HAD}=\widehat{DAK}\)hay AD là tia phân giác của góc A
Vậy AHDK là hình vuông khi và chỉ khi AD là tia phân giác của góc A
c)Ta có:Để HK nhỏ nhất thì AD nhỏ nhất
Suy ra AD vuông góc với BC
Vậy HK nhỏ nhất khi và chỉ khi D là hình chiếu của A trên BC
A B C M D E
dễ thấy tứ giác ADME là hình chữ nhật do có 3 góc vuông
nên chu vi ADME=2(AE+EM)
mà do ABC vuông cân nên góc ECM =45 độ nên MEC vuông cân tại E nên EM=EC
nên chu vi ADME=2(AE+EM)=2(AE+EC)=2AC là không đổi
b.DE=AM nhỏ nhaasrt khi M là hình chiếu của A lên BC
Bài giải:
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
=