K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Câu a đề=)))?

1 tháng 1 2022

Đề câu a thiếu nhé c:v

31 tháng 12 2021

a: Xét ΔBMD và ΔCMA có 

\(\widehat{BMD}=\widehat{CMA}\)

MB=MC

\(\widehat{MBD}=\widehat{MCA}\)

Do đó: ΔBMD=ΔCMA

1 tháng 1 2022

a: Xét ΔBAC có 

MN//AB

nên CMCB=MNABCMCB=MNAB

⇔MN=6⋅12=3(cm)⇔MN=6⋅12=3(cm)

b: Vì M đối xứng với E qua AC

nên AC là đường trung trực của ME

mà AC cắt ME tại N

nên N là trung điểm của ME

Xét tứ giác AMCE có 
N là trung điểm của đường chéo ME

N là trung điểm của đường chéo AC

Do đó: AMCE là hình bình hành

b: Xét tứ giác ABDC có

AB//DC

AB=DC
DO đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AD=BC

9 tháng 1 2019

A B C M D I K

a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)

        AB // CD (gt) => góc BAC = góc ACD (so le trong)

Xét t/giác ABC và t/giác CDA

có góc ACB = góc DAC (cmt)

 AC : chung

 góc BAC = góc ACD (cmt)

=> t/giác ABC = t/giác CDA (g.c.g)

b) Ta có : t/giác ABC = t/giác CDA (cmt)

=> AB = CD (hai cạnh tương ứng)

Do AB // CD (gt) => góc ABD = góc BDC (so le trong)

Xét t/giác AMB và t/giác CMD

có góc BAM = góc  MCD (cmt)

  AB = CD (cmt)

  góc ABM = góc BDM (cmt)

=> t/giác AMB = t/giác CMD (g.c.g)

=> AM = MC (hai cạnh tương ứng)

=> M là trung điểm của AC

c) Xét t/giác AMI và t/giác CMK

có góc DAC = góc ACK (cmt)

    AM = CM (cmt)

   góc IMA = góc CMK (đối đỉnh)

=> t/giác AMI = t/giác CMK (g.c.g)

=> MI = MK (hai cạnh tương ứng)

=> M là trung điểm của IK

30 tháng 11 2019

Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được

26 tháng 1 2021

a. Nối DD và FF 

Xét ΔBDFΔBDF và ΔDEFΔDEF , ta có :

DF=DFDF=DF ( cạnh chung )

ˆBDF=ˆDEFBDF^=DEF^ ( vì AB//EFAB//EF )

ˆDFB=ˆFDEDFB^=FDE^ ( vì DE//BCDE//BC )

⇒ΔBDF=ΔFDE(g.c.g)⇒ΔBDF=ΔFDE(g.c.g)

⇒DB=EF⇒DB=EF ( hai cạnh tương ứng )

Mà AD=DB⇒AD=EFAD=DB⇒AD=EF

b. Xét ΔADEΔADE và ΔEFCΔEFC , ta có :

ˆA=ˆFECA^=FEC^ ( vì AB//EFAB//EF )

AD=EFAD=EF ( theo câu a )

ˆADE=ˆEFC(=ˆB)ADE^=EFC^(=B^)

⇒ΔADE=ΔEFC(g.c.g)

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!

 Bài 1: Cho tam giác ABC. Gọi E là trung điểm của AC. Đường thẳng qua E và song song với BC cắt AB tại F. Đường thẳng qua E và song song với AB cắt BC tại D. Cm:   a) F là trung điểm của AB và D là trung điểm của BC   b) DF//AC        DF= 1/2 ACBài 2: Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M. Cm:   a) tam giác AMB = tam giác AMC   b) M là trung điểm của cạnh BC   c) K là một điểm...
Đọc tiếp

 Bài 1: Cho tam giác ABC. Gọi E là trung điểm của AC. Đường thẳng qua E và song song với BC cắt AB tại F. Đường thẳng qua E và song song với AB cắt BC tại D. Cm:

   a) F là trung điểm của AB và D là trung điểm của BC

   b) DF//AC

        DF= 1/2 AC

Bài 2: Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M. Cm:

   a) tam giác AMB = tam giác AMC

   b) M là trung điểm của cạnh BC

   c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Góc BAH=2BIH

Bài 3: Cho tam giác vuông ABC, AC=AC. Qua A kẻ một đường thẳng d bất kì ko cắt cạnh nào của tam giác. Từ B và C kẻ BD vuông góc d, CE vuông góc d. Cm:

   a) tam giác ADB = tam giác CEA

   b) BD+CE=DE

   c) Giả sử AC = 2CE. Tính góc ECB, góc CBD

 

                                GIÚP MIK VS MIK ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN TRƯỚC NHÉ!

0
6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.