Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AM là đường cao
nên AM là đường phân giác(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AN là đường cao
nên AN là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
2: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
4: Ta có: AH=AD
mà AH=AE
nên AD=AE=AH
1: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AN là đường cao
nên AN là đường phân giác(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AM là đường cao
nên AM là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
2: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
bài này bn biết làm chưa ,có cần mình gửi đáp án cho bn luôn ko?
a) bạn chỉ cần tính góc DAB + góc CAE = 90 độ. VÌ góc BAC = 90 độ.
NÊn SUY RA: góc DAB + góc CAE + góc BAC = 180 độ
SUY ra 3 điểm D, A, E thẳng hàng
b)
a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :
HN=ND(gt)HN=ND(gt)
ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)
AN:ChungAN:Chung
=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)
b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :
HM=ME(gt)HM=ME(gt)
AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)
AM:ChungAM:Chung
=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)
Xét tứ giác ANHM có :
Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)
Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)
Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)
=> Tứ giác ANHM là hình chữ nhật
=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)
Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)
Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)
Suy ra : ΔAND=ΔAMEΔAND=ΔAME
=> DA=AEDA=AE(2 cạnh tương ứng) (*)
c) Từ (*) => A là trung điểm của DE
Do đó : D,A,E thẳng hàng (đpcm)