K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

Làm

a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :

BM là cạnh chung

góc ABM = góc KBM ( gt )

Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )

=> BA = BK nên B thuộc đường trung trực của AK

MA = MK nên K thuộc đường trung trực của AK 

Vậy BM là đường trung trực của AK

b)  Xét hai tam giác vuông AMN và tam giác KMC có :

góc AMN = góc KMC ( đối đỉnh )

MA = MK ( theo câu a )

Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn ) 

Vậy MC = MN 

c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho

d) Ta có : AB + AN = BN 

BK + KC = BC 

Mà BA = BK ( theo câu a )

AN = KC ( Theo câu b )

=> BN = BC ( *)

Xét  tam giác NBM và tam giác CBM có : 

BM là cạnh chung

BN = BC ( theo *)

góc NBM = góc CBM ( gt )

Do đó : tam giác NBM = tam giác CBM ( c.g.c )

=> góc BMN = góc BMC 

mà góc BMN + góc BMC = 180°

=>  góc BMN = góc BMC = 180° : 2

=> góc BMN = góc BMC = 90°

Vậy BM vuông hóc với NC 

HỌC TỐT

24 tháng 6 2020

Hình bn tự vẽ nhé

a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;

               góc BAM = góc BKM =  90độ

                cạnh BM chung

                góc ABM = góc KBM [ vì BM là tia pg góc B ]

Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK 

và MA = MK nên M \(\in\)đường trung trực của AK 

\(\Rightarrow\)BM là đường trung trực của AK

b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;

              góc MAN = góc MKC = 90độ

              AM = KM [ theo câu a ]

              góc AMN = góc KMC [ đối đinh ]

Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)MN = MC [ cạnh tương ứng ]

c.Theo câu a ; tam giác ABM = tam giác KBM 

\(\Rightarrow\)AM = KM  [ cạnh tương ứng ]     [ 1 ]

Xét tam giác KMC vuông tại K nên ;

MK bé hơn MC                                    [ 2 ]

Từ [ 1 ] và [ 2  ] suy ra ; 

AM bé hơn MC 

d. Theo câu b ; tam giác AMN = tam giác KMC 

\(\Rightarrow\)AN = KC [ cạnh tương ứng ]

mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]

\(\Leftrightarrow\)AN + BA = KC + BK 

\(\Rightarrow\)      BN     =      BC nên B thuộc đường trung trực của CN 

mà MN = MC nên M thuộc đường trung trực của CN 

Vậy BM thuộc đường trung trực của CN 

\(\Rightarrow\)BM vuông góc với CN

Theo mk nghĩ thì câu c . So sánh AM với MC 

                                     d. BM vuông góc với CN 

HỌC TỐT

Nhớ kb với mk nha

18 tháng 2 2017

A B C D E

Đề câu a sai rồi

18 tháng 2 2017

Mình sửa lại rồi nhé

10 tháng 5 2017

a. Xét \(\Delta ABH\) và \(\Delta MBH\) có:

BA=BM do gt

\(\widehat{BAH}=\widehat{BMH}=90^0\)

BH là cạnh huyền chung

Do đó: \(\Delta ABH=\Delta MBH\) theo trường hợp ch-cgv

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0