Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C K I D
a) Xét tam giác BAD và tam giác BHD có :
\(\widehat{BAD}=\widehat{BHD}=90^o\)
BD chung
\(\widehat{ABD}=\widehat{HBD}\) (Do BD là phân giác)
\(\Rightarrow\Delta BAD=\Delta BHD\) (Cạnh huyền góc nhọn)
\(\Rightarrow AB=HB\)
Ta cũng có \(\Delta BAD=\Delta BHD\) nên AD = HD.
Xét tam giác ADK và tam giác HDC có:
\(\widehat{KAD}=\widehat{CHD}=90^o\)
AD = HD
\(\widehat{ADK}=\widehat{HDC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta ADK=\Delta HDC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow AK=HC\)
b) (Cô làm theo cách khi chưa học về các đường đồng quy trong tam giác)
Kéo dài BD cắt KC tại I.
Ta thấy BK = BA + AK = BH + HC = BC
Xét tam giác BKI và tam giác BCI có :
\(\widehat{KBI}=\widehat{CBI}\)
BI chung
BK = BC (CMT)
\(\Rightarrow\Delta BKI=\Delta BCI\) (c-g-c)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}\) (Hai góc tương ứng)
Mà chúng lại là hai góc kề bù nên \(\widehat{BIK}=\widehat{BIC}=90^o\)
Vậy nên BD vuông góc KC.
c) Xét tam giác ABH có BA = BH nên nó là tam giác cân.
Vậy BD là phân giác thì đồng thời nó là đường cao.
Vậy BD vuông góc AH.
Lại có BD vuông góc KC nên AH // KC.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
K C B A D H
a) Xét tam giác ABD và tam giác HBD có :
\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )
Chung BD
\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )
\(\Rightarrow AD=DH\left(đpcm\right)\)
b) Xét tam giác DHC vuông tại H có \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )
Mà \(AD=DH\)( câu a )
\(\Rightarrow AD< CD\)
c) \(\widehat{ABC}=180^o-90^o-30^o=60^o\)
Ta có BD là tia phân giác \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)
Xét tam giác BDC có \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)
\(\Rightarrow\)tam giác BDC cân tại D
Mà DH là đường cao \(\left(DH\perp BC\right)\)
\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC
\(\Rightarrow BH=HC\)
Xét tam giác KBH và tam giác KCH có :
\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)
BH = HC
Chung KH
\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)
\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều
\(\Rightarrow\widehat{BKC}=60^o\)
Từ (1) \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)
\(\Rightarrow\widehat{BKH}=30^o\)
Xét tam giác BDK có \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)
\(\Rightarrow\Delta BDK\)cân tại D
Mà AD là đường cao \(\left(AD\perp BK\right)\)
\(\Rightarrow\)AD là trung tuyến tam giác BDK
\(\Rightarrow BA=AK\)
Xét \(\Delta KBC\)có
KH là trung tuyến ( BH = HC )
CA là trung tuyến ( BA = AK )
KH và CA cắt nhau tại D
\(\Rightarrow\)D là trọng tâm tam giác BKC
d) Ta có \(\frac{KB}{2}=AK\)( do AB = AK )
\(AD+AK>\frac{KB}{2}\)
Mà KC = KB
\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)
Vậy ...
Hình bạn tự vẽ nhé =)))
a) Chứng minh t. giácDBA = t.giácDBH
Xét t. giácDBA ( ABD = 90O ) và t.giácDBH ( DHB = 90O ) có :
ABD = DBH ( vì BD là p/giác )
BD là cạnh chung
=) t. giácDBA = t.giácDBH ( ch-gn )
b) So sánh độ dài đoạn AD và DC
Vì t. giácDBA = t.giácDBH ( cm ở câu a )
=) AB = DH
Xét t.giác DHC ( DHC = 90O ) có :
DC là cạnh huyền
=) DC là cạnh lớn nhất
=) DC > DH
mà DH = AD
=) AD < DC
c) Chứng minh BD vuông MC
Xét t.giác BMC có :
CA là đường cao tương ứng cạnh BA ( Vì CA vuông góc vs BA )
MH là đường cao tương ứng cạnh BC ( Vì MH vuông góc s BC )
mà CA cắt MH tại D
=) D là trực tâm của t.giác BMC
mà BD đi qua D
=) BD là đường cao của tam giác BMC
=) BD vuông MC
d) Chứng minh AH song song MC
Vì AB = BA ( vì t. giácDBA = t.giácDBH )
=) t.giác BAH cân tại B
Xét t.giác BAH cân tại B ( cmt ) có :
BD là đường p/giác ( gt )
=) BD cũng đồng thời là đường cao
=) BD vuông góc vs AH
Ta có :
BD vuông góc vs AH
mà BD cũng vuông góc vs MC
=) AH // MC
=)))