Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABI và ΔCKI có:
IA = IC (gt)
∠BIA = ∠KIC (đối đỉnh)
IB = IK (gt)
⇒ ΔABI = ΔCKI (c-g-c)
⇒ ∠BAI = ∠ICK ( cặp góc tương ứng). Mà ∠BAI là góc vuông nên ∠ICK cũng là góc vuông
Vậy IC \(\perp\) CK
b) Vì ΔABI = ΔCKI (c-g-c) nên AB = CK (cặp cạnh tương ứng)
Xét ΔABC và ΔCKA có:
AC: cạnh chung
∠BAI = ∠ACK (cmt)
AB = CK (cmt)
⇒ ΔABC = ΔCKA (c-g-c)
Vậy BC = AK ( cặp cạnh tương ứng)
Bài làm
a) Xét tam giác AIB và tam giác CIK có:
AI = IC ( Do I là trung điểm AC )
\(\widehat{AIB}=\widehat{CIK}\)( Hai góc đối đỉnh )
BI = IK ( gt )
=> Tam giác AIB = tam giác CIK ( c.g.c )
=> \(\widehat{BAI}=\widehat{ICK}\left(=90^0\right)\)
=> IC vuông góc với CK.
b) Ta có: IC vuông góc với CK
=> AC vuông góc với CK
AC vuông góc với AB
=> CK // AB .
Xét tam giác AKB có:
N là trung điểm AK
I là tủng điể, BK
=> IN là đường trung bình.
=> IN // AB.
Xét tam giác BKC có:
I là trung điểm BK ( Do IB = IK )
M là trung điểm BC
=> IM là đường trung bình.
=> IM // CK
Mà AB // CK
=> IM // IN
Mà IM và IN trùng trung vì có chung I
=> M, I, N thẳng hàng. ( đpcm )
a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
AC chung
AB=AD
Do đó: ΔCAB=ΔCAD
Suy ra: \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của góc BCD
b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
\(\widehat{HCA}=\widehat{KCA}\)
Do đó: ΔCHA=ΔCKA
Suy ra: CH=CK
c: Xét ΔCDB có CH/CD=CK/CB
nên HK//DB