K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a. Xét \(\Delta ABC\) có: MA=MB(gt)

NB=NC(gt)

\(\Rightarrow\) MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN=\dfrac{1}{2}AC=\dfrac{1}{2}\cdot12=6\left(cm\right)\)

Vậy MN = 6cm

b. MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//AC\Rightarrow AMNC\) là hình thang (1)

\(\widehat{A}=90^o(\Delta ABC\) vuông tại A) (2)

Từ (1) và (2) \(\Rightarrow AMNC\) là hình thang vuông

c. Ta có: \(MN=\dfrac{1}{2}AC\) ( MN là đường trung bình của \(\Delta ABC\) )

\(DM=MN\left(gt\right)\)

\(\Rightarrow DN=AC\) (*)

Mặt khác MN//AC (AMNC là hình thang cân) ; D nằm trên tia đối của tia MN \(\Rightarrow DM//AC\) (**)

Từ (*) và (**) \(\Rightarrow\) ADNC là hình bình hành

\(CD\cap AN\equiv K\)

\(\Rightarrow KN=KA\) \(\Rightarrow\) DK là đường trung tuyến của AN

Ta lại có: DM = MN (gt)

\(\Rightarrow\) AM là đường trung tuyến của DN

Xét \(\Delta DAN\) có:

DK là trung tuyến của AN

AM là trung tuyến của DN

\(DK\cap AM\equiv I\)

\(\Rightarrow\) I là trọng tâm của \(\Delta DAN\)

d. Xét \(\Delta AMN\)\(\Delta AMD\) có:

AM chung

\(\widehat{AMN}=\widehat{AMD}\left(=90^o\right)\)

DM = MN (gt)

\(\Rightarrow\Delta AMN=\Delta AMD\left(c.g.c\right)\)

\(\Rightarrow AN=AQ\Rightarrow\Delta ANQ\) cân tại A mà DK và NQ là trung tuyến hai cạnh bên \(\Rightarrow DK=NQ\)

\(\Rightarrow NQ< DK+AM\left(đpcm\right)\)

15 tháng 10 2017

thực sự cảm ơn bạn rất nhiều..bạn ơi bạn có thể giải giùm mình câu 1,2d,3d đc ko

1)cho biết a+b=a^3+b^3=1.tính (a-b)^2012

2)

Cho tam giác ABC cân tại A.M là trung điểm của AB.từ Mker ME song song với BC,cắt AC ở E

a)cm: tứ giác BMEC là hình thang cân

b)Từ M kẻ MF son song với AC,cắt BC ở F.CM tứ giác MECF là hình bình hành

d) MC cát EF tại K.Kẻ kH vuông góc với ME(H thuộc ME).cm:FK2=KH2+1/4 IK2

3) cho tam giác ABC vuông tại A có M là trung điểm BC,N là trung điểm AB.Biết AC=12cm

a)tính MN

b)cm:ANMC là hình thang vuông

c)Lấy D đối xứng với N qua M.cm:BD=CN

d)kẻ AH vuông góc với NC.Gọi I là trung điểm của HC.Cm MI vuông góc AI

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló