Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AD//EM và AD=EM(1)
M là trung điểm của EK
=>\(EK=2EM\left(2\right)\)
A là trung điểm của ID
=>\(ID=2DA\left(3\right)\)
Từ (1),(2),(3) suy ra EK=ID
EM//AD
K\(\in\)EM
I\(\in\)AD
Do đó: EK//ID
Xét tứ giác EKDI có
EK//DI
EK=DI
Do đó: EKDI là hình bình hành
a) ADME là hình chữ nhật vì có 3 góc vuông: \(\widehat{A}\)= \(\widehat{D}\)= \(\widehat{E}\)= 900
b) Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)
Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của AM
=>A,I,M thẳng hàng
c: Xét ΔBMP có
BD vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔBMP cân tại B
=>BA là phân giác của góc MBP
Xét ΔAMP có
AD là đường cao, là đường trung tuyến
Do đó: ΔAMP cân tại A
=>AB là phân giác của góc MAP(1)
Xét ΔAMQ có
AC vừa là đường cao, vừa là đường trung tuyến
Do đó; ΔAMQ cân tại A
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ
=>P,A,Q thẳng hàng
Xét ΔAMB và ΔAPB có
AM=AP
AB chung
BM=BP
Do đó: ΔAMB=ΔAPB
=>góc AMB=góc APB
Xét ΔAMC và ΔAQC có
AM=AQ
góc MAC=góc QAC
AC chung
Do đó: ΔAMC=ΔAQC
=>góc AMC=góc AQC
=>góc AQC+góc AMB=180 độ
mà góc AMB=góc APB
nên góc AQC+góc APB=180 độ
=>BP//QC
=>BPQC là hình thang
d: AM=AP
AM=AQ
Do đó: AP=AQ
mà P,A,Q thẳng hàng
nên A là trung điểm của PQ
Em tham khảo bài toán tương tự tại link dưới đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
a) xét tứ giác APMN có
\(\widehat{BAC}=90^o\\ \widehat{MNA}=90^O\\ \widehat{MPA}=90^O\)
=> tứ giác APMN là hình chữ nhật
b) ΔABC vuông tại A, có đường trung tuyến AM
=> AM = MC (1)
=> ΔAMC là tam giác cân
Lại có MP là đường cao (\(\widehat{MPA}=90^O\))
=> MP cũng là đường trung tuyến
=> PA = PC
xét tứ giác AMCQ có
PM = PQ (giả thiết)
PA = PC (chứng minh trêN)
=> tứ giác AMCQ là hình bình hành (2)
từ (1) và (2) => hình bình hành AMCQ là hình thoi
a: Xét tứ giac AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nen AEMD là hình chữ nhật
b: Xét ΔAMP có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAMP cân tại A
=>AB là phân giác của góc MAP(1)
Xét ΔAMK có
AC vừa là đường cao, vừa là trung tuyến
nên ΔMKA cân tại A
=>AC là phân giác của góc MAK(2)
Từ (1), (2) suy ra góc KAP=2*90=180 độ
=>K,A,P thẳng hàng
mà AK=AP
nên A là trung điểm của KP
a)xét tứ giác ADME có
\(\widehat{A}\) = 90°(do ΔABC vuông tại A)
\(\widehat{ADM} = 90°\)(do MD⊥AB)
\(\widehat{AEM} = 90°\)(do ME ⊥ AC)
nên ADEM là hình chữ nhật
b) Ta có:
ME = MK = \(\dfrac{EK}{2}\)( do M là trung điểm EK) (1)
DA = AI = \(\dfrac{DI}{2}\)( do A là trung điểm DI) (2)
Mà AD = ME (do ADME là hcn) (3)
Từ (1),(2),(3)
⇒ EK = DI
Mặt khác EK // DI (do AD // ME)
Nên DKEI là hbh
⇒ DK // EI và DK = EI
có hình k ạ?