Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABE và ΔHBE, ta có
:
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
b)
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
c)
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE =ΔCHE
=> EK = EC(hai cạnh tuong ứng)
d)
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
đề ngay chỗ K là giao điểm của AB và HE là sao mk vẽ ko được???
8789
A B C E H K
a) Xét t/giác ABE và t/giác HBE
có góc A = góc BHE = 900 (gt)
BE : chung
góc ABE = góc EBH (gt)
=> t/giác ABE = t/giác HBE (ch - gn)
b) Do t/giác ABE = t/giác HBE (cmt)
=> EA = EH (hai cạnh tương ứng)
Ta có: góc BAE + góc EAK = 1800 (gt)
=> góc EAK = 1800 - góc BAE = 1800 - 900 = 900
Xét t/giác AEK và t/giác HEC
có góc EAK = góc EHC (cmt)
AE = EH (cmt)
góc AEK = góc HEC (đối đỉnh)
=> t/giác AEK = t/giác HEC (g.c.g)
=> EK = EC (hai cạnh tương ứng)
c) Ta có : t/giác ABE = t/giác HBE (cm câu a)
=> AB = HB (hai cạnh tương ứng)
Ta lại có: t/giác AEK = t/giác HEC (cm câu b)
=> góc K = góc C (hai góc tương ứng)
Xét t/giác BKH và t/giác BCA
có góc K = góc C (cmt)
BH =AB (cmt)
góc B : chung
=> t/giác BKH = t/giác BCA (g.c.g)
=> BC = KH (hai cạnh tương ứng)
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
=>EB là đường trug trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đo: ΔAEK=ΔHEC
Suy ra: EK=EC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
Trả lời................
Tớ không biết đúng hay sai đâu nha Ý Phạm
a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:
BE=BE (cạnh chung)
ABE^=HBE^
⟹ ABE^=HBE^(ch+gn)
b,Ta có:
BA=BH (tam giác ABE = tam giác HBE)
EA=EH (________________________)
⟹ BE là đường trung trực của AH
c,Xét tam giác EKA và tam giác ECH có
AE=EH (gt)
EAK^=EHK^(=90o)
AEK^=HEC^(đối đỉnh)
⟹Tam giác EKA=tam giacsEHK (g-c-g)
⟹EK=EH ( cạnh tương ứng)
d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc
EC là đường xiên
⟹EH<EC( quan hệ đường vuông góc)
Mà EH=AE(tam giác ABE = tam giác HBE)
⟹AE<AC
Xin lỗi mình nhầm ở ròng cuối nha là
EC>AE