K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có 

 gócABE = gócHBE ( BE là phân giác gócABH) 

BE chung

 \(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )

\(=>\)AE=EH ( 2 cạnh tương ứng)

b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có

AE=EH ( theo câu a)

góc AEK = HEC ( 2 góc đối đỉnh ) 

\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)

\(=>\)EK=EC ( 2 cạnh tương ứng ) 

12 tháng 3 2022

tham khảo

a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)

BE chung

^ABE = ^HBE (BE là phân giác ^ABC)

=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)

b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)

=> E thuộc đường trung trực của AH (1)

Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)

=> B thuộc đường trung trực của AH (2)

Từ (1) và (2) => BE là đường trung trực của AH (đpcm)

c) Ta có: ^BEK = ^BEA + ^AEK

               ^BEC = ^BEH + ^HEC

Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)

      ^AEK = ^HEC (2 góc đối đỉnh)

=> ^BEK = ^BEC

Xét tam giác BEK và tam giác BEC: 

^BEK = ^BEC (cmt)

^KBE = ^CBE (BE là phân giác ^ABC)

BE chung

=> tam giác BEK = tam giác BEC (g - c - g)

=> EK = EC (cặp cạnh tương ứng)

 

12 tháng 3 2022

bạn ơi dấu ^ nghĩa là gì

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

11 tháng 2 2018

khó thể xem trên mạng

2 tháng 5 2018

Hình tự vẽ

a)Xét hai tam giác vuông ABE và HBE CÓ:

AE-chung

góc ABE=góc HBE(gt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Có tam giác ABE=tam giác HBE(cmt)

=>AB=BH

=>Tam giác BHA cân tại B

mà BE là p/g của góc ABH

=>BE là đường cao, đường trung tuyến

=>BE\(\perp\) AH

c)Xét tam giác AEK và tam giác HEC CÓ

góc KAE=góc EHC=900

AE=EH

góc AEK=góc HEC

=>tam giác AEK= tam giác HEC(c.g.c)

=>EK=EC

d)Xét tam giác EHC có góc EHC=900

=> EC là cạnh lớn nhất

=>EC>EH

Mà EH=AE

=>EC>AE

4 tháng 6 2020

hình tự nghen:3333

a) Xét tam giác ABEvà tam giác HBE có

B1=B2(gt)

BE chung

BAE=BHE(=90 độ)

=> tam giác ABE= tam giác HBE( ch-gnh)

b) từ tam giác ABE= tam giác HBE=> AE=HE( hai cạnh tương ứng)

Xét tam giác AEK và tam giác HEC có 

AEK=HEC( đối đỉnh)

AE=HE(cmt)

KAE=CHE(=90 độ)

=> tam giác AEK=tam giác HEC(gcg)

=> EK=EC( hai cạnh tương ứng)

c) vì tam giác EHC vuông tại H

=> áp dụng định lý pytago vào tam giác vuông EHC

=> EH^2+HC^2=EC^2

=> EC^2>EH^2

=>EC>AE( EH=AC)

d) từ tam giác BAE= tam giác BHE=> AB=HB( hai cạnh tương ứng)

Xét tam giác BAI và tam giác BHI có 

B1=B2(gt)

BI chung

AB=HB(cmt)

=> tam giác BAI= tam giác BHI( cgc)

=> BIA=BIH( hai góc tương ứng)

mà BIA+BIH=180 độ( kề bù)

=> BIA=BIH=180/2=90 độ

=> BE vuông góc với AH

21 tháng 4 2021

a. Áp dụng đ/l Pytago có

\(AC^2=BC^2-AB^2=100-36\)

=> AC = 8 (cm)
b/ Xét t/g ABE vg tại A và t/g HBE cg tại H có

BE chung

\(\widehat{ABE}=\widehat{CBE}\)

=> t/g ABE = t/g HBE
=> AB = HB ; AE = HE (*)
Xét t/g HEC vg tại H => EC > HE

=> AE < EC
c/ Xét t.g BCK có

KH vg góc BC
CA vg góc BK

CA cắt HK tại E
=> E là trực tâm t/g BCK

=> BE ⊥ CK (1)
(*) => BE là đường trung trực của AH

=> BE ⊥ AH (2)
(1) ; (2)
=> CK // AH
d/ Xét t.g BAH có AB = AH ; \(\widehat{ABH}=60^o\)

=> t/g BAH đều

21 tháng 4 2021

cảm ơn ạ!

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

9 tháng 5 2023

Xét ΔABE và ΔHBE : có :

^ BAE = ^ BHE =  90° ( giả thiết )

    BE chung

  ^ABE = ^HBE ( giả thiết )

=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )

b) có ΔABE=ΔHBE ( câu a )

=> BA =BH (hai cạnh tương ứng )

gọi I là giao điểm của BE và AH .

xét ΔABI và ΔHBI:có:

BA=BH (cmt ) 

^ABE = ^HBE ( giả thiết )

BI chung

=>ΔABI = ΔHBE ( c-g-c )

=> AE=EH ( hai cạnh tương ứng ) (1)

=> ^BIA = ^BIH ( hai góc tương ứng )

có  ^BIA + ^BIH = 180°

=> ^BIA = ^BIH = 180°:2=90° 

=>BI vuông góc AH (2) 

từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH

c, xét  ΔAEK và  ΔHEC

có: ^EAK = ^EHC = 90° (gt)

        AE=EH (ΔABE=ΔHBE )

      ^AEK=^HEC ( hai góc đối đỉnh )

=>ΔAEK và  ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )

=> EK=EC ( hai cạnh tương ứng )

d, có : AE<EK  (trong Δ vuông cạnh huyền là cạnh lớn nhất )

     mà EK=EC (câu c)

     nên AE<EC (đpcm)