K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 8 2020
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
29 tháng 4 2016
a) Nối BE rồi so sánh tam giác ABE và BDE
b) tam giác ADE cân, góc ADE=góc EAD, gics HAD= góc ADE(slt)
c) AK là phân giác góc ngoài đỉnh A => góc BAK = 135 độ
A H B C I K D
a)
Xét tam giác AHD vuông tại H
=> \(\widehat{HAD}+\widehat{ADH}=90^o\)
Có: \(\widehat{BAD}+\widehat{DAC}=\widehat{BAC}=90^o\)
Mà \(\widehat{HAD}=\widehat{DAC}\)( AD là phân giac góc HAC)
=> \(\widehat{ADH}=\widehat{BAD}\)hay \(\widehat{ADB}=\widehat{BAD}\)
=> Tam giác BAD cân
b) Tam giác BAD cân , có BI là phân giác góc B
=> BI vuông AD
Xét tam giác ABD có AH vuông BC, BI vuông AD và BI cắt AH tại I
=> I là trực tâm tam giác ABD
=> DI vuông BA
mà CA vuông BA
=> DI//AC
c) Kẻ AK vuông AC
Xét tam giác ADH vuông tại H và tam giác ADK vuông tại K
có góc HAD= góc KAD ( AD là phân giác góc HAC)
AD chung
=> Tam giác ADH = ADK
=> DH=DK
Xét tam giác vuông DKC có DC cạnh huyền
=> DC>DK
Vậy DC>DH