K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

=>AH=AD

=>ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(1)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

=>AH=AE
=>ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Từ (1) và (2) suy ra \(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

c: Xét ΔAHB và ΔADB có

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

=>BD\(\perp\)DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

hay CE\(\perp\)ED(4)

Từ(3) và (4) suy ra BD//CE
hay BDCE là hình thang

d: DE=AD+AE=AH+MN

24 tháng 10 2018

A B C H D M N E 1 2 3 4

MK chỉ gợi ý thôi bạn tự triển khai nha! có gì không hiểu thì nhắn tin hỏi mk!

a, MHNA là hình chữ nhật vì có 3 góc \(\widehat{M};\widehat{N};\widehat{A} =90^o\)

b,nối DA và AE

Ta có:

AB là đường trung trực của DH ( tự cm) nên BD=BH và AD=AH 

\(\Rightarrow \Delta BDA=\Delta BHA (c.c.c)\)

\(\Rightarrow \widehat{A_1}=\widehat{A_2}\) (1)

cm tương tự ta được \(\widehat{A_3}=\widehat{A_4}\) (2)

Từ (1) và (2) suy ra

\(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=2\widehat{A_2}+2\widehat{A_3}=2\left(\widehat{A_2}+\widehat{A_3}\right)\)

\(=2.90^o=180^o\)

\(\Rightarrow\widehat{DAE}=180^o\) suy ra D,A,E thẳng hàng

c, Từ 2 cặp tam giác bằng nhau đã cm ở câu b ta suy ra được 

\(\widehat{BDA}=\widehat{BHA}=90^o\Rightarrow BD\perp DE\)

và \(\widehat{AEC}=\widehat{AHC}=90^o\Rightarrow EC\perp DE\)

Từ 2 cái trên suy ra BD//EC suy ra DBCE là hình thang  

( đây là hình thang vuông nha!)

d, cũng từ 2 cặp tam giác bằng nhau ở câu b suy ra

AH=DA và AH=AE

suy ra AH+AH=AD+AE=DE

mà MHNA là HCN suy ra MN=AH

suy ra AH+AH=AH+MN

suy ra AH+MN=DE

22 tháng 12 2017

a) Xét tứ giác AMHN có:

MÂN=AMH=ANH=90độ

=> AMHN là hình chữ nhật

b) Xét tam giác ANE và tam giác DME có

AN=DM(=MH)

NE=AM(=HN)

góc ANE = góc DMA (=90 độ)

Do đó tam giác ANE = tam giác DME (C-G-C)

=> góc ADM = NAE

Trong tam giác DMA vuông tại M có:

góc ADM +MAD=90

NAE + MAD=90

Ta có 

DAE=DAM+MAN+NAE

DAE=90+DAM+NAE

DAE=90+90

DAE=180

Vậy D,A,E thẳng hàng

30 tháng 11 2014

a:32-7x+2

=3x2-6x-x+2=(3x2-6x)-(x-2)

=3x(x-2)-(x-2)=(x-2)(3x-1).

 

 

1 tháng 12 2014

à wen phần b:x4-64=(x2)2-82

 

24 tháng 10 2021

a: Ta có: H và D đối xứng nhau qua BA

nên AB là đường trung trực của HD

Suy ra: AB\(\perp\)HD và M là trung điểm của HD

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AC\(\perp\)HE và N là trung điểm của HE

Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

DE//BC

mà H\(\in\)BC

nên DE//CH

Xét tứ giác DECH có DE//CH

nên DECH là hình thang

Ta có: ΔHAB vuông tại H 

mà HD là đường trung tuyến

nên \(HD=DA=DB=\dfrac{AB}{2}\)

Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=AE=EC=\dfrac{AC}{2}\)

Xét ΔEAD và ΔEHD có

EA=EH

DA=DH

ED chung

Do đó: ΔEAD=ΔEHD

=>\(\widehat{EAD}=\widehat{EHD}=90^0\)

Xét tứ giác ADHE có

\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

=>AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

a: H đối xứng D qua AB

nên ABlà trung trực của HD

=>AH=AD và ABvuông góc với HD tại I
=>ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)

H đối xứng E qua AC

nên AC vuông góc với HE tại trung điểm của HE

=>AC là phân giác của góc HAE(2)

Xét tứ giác AIHK có

góc AIH=góc AKH=góc KAI=90 độ

nên AIHK là hình chữ nhật

b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

c: BD+CE=BH+CH=BC