K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Bạn tự vẽ hình nha!

a) Xét tam giác AKM và tg AHM có:

AM là cạnh chung

góc AMK= gocsAMH (=90*)

KM=HM (gt)

=> tg AKM= tg AHM (c.g.c)

=>AK=AH (cạnh tương ứng) (1)

b) Tương tự : tg AHN= tgAIN (c.g.c)

=>AH=AI (cạnh tương ứng) (2)

Từ (1) và (2) => AK=AI

Mà AK+ AI= KI

=> AK=1/2 KI

=>A là trung điểm của KI

c) Xét tg AKB và tg AHB có:

AB là cạnh chung

AK=AH (theo 1)

góc KAB= góc HAB (do tg AKM= tg AHM)

=> tg AKB= tg AHB (c.g.c)

d) cái này mik chưa bt nha

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

a.
Xét tam giác AHM và tam giác DCM có:
AM = DM (gt)
AMH = DMC (2 góc đối đỉnh)
MH = MC (M là trung điểm của HC)
=> Tam giác AHM = Tam giác DCM (c.g.c)
b.
AHM = DCM (tam giác AHM = tam giác DCM)
mà AHM = 90độ
=> DCM = 90độ
Tam giác ABC vuông tại A có:
ABC + ACB = 90độ
60độ  + ACB = 90độ
ACB = 90  - 60
ACB = 30độ
ACD = ACB + DCM = 30  + 90  = 120độ

22 tháng 2 2019

a) C/M tam giác AHM= tam giác DCM

Xét tam giác AHM và tam giác DCM, ta có:

MA=MD (gt)
góc AMH= góc DMC (đđ)

MH=MC (gt)

Vậy tam giác AHM= tam giác DCM (c-g-c)

b) Tính góc ACD

Ta có tam giác ABC vuông tại A có góc B=600 nên góc ACB=300

Lại có góc MCD= góc AHM = 900 (hai tam giác bằng nhau)

Vậy góc ACD= 300 + 900 = 1200

c) C/M AK=CD

Trong tam giác AHK, ta có AN đường cao đồng thời là trung tuyến ( AN vuông góc HK và NH=NK)

Nên tam giác AHK cân tại A

Suy ra AK=AH

Mà AH=CD (hai tam giác bằng nhau)

Vậy AK=CD

d) C/M K, H, D thẳng hàng

Ta có tam giác AHC= tam giác DCH ( c-g-c)

Nên góc ACH= góc DHC

Mà hai góc này ở vị trí so le trong

Suy ra AC//HD

Lại có HK//AC ( cùng vuông góc với AB)

Vậy K, H, D thẳng hàng

12 tháng 3 2018

a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.

Xét tam giác vuông AMH và tam giác vuông ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HM=HN.\)

b) Dễ dàng thấy ngay AC là đường trung trực của HF.

Khi đó thì AH = AF; CH = CF

Xét tam giác AHC và tam giác AFC có:

Cạnh AC chung

AH - AF

CH = CF

\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)

c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)

\(\Rightarrow IN=CN\)

Xét tam giác vuông INF và tam giác vuông CNH có:

HN = FN

IN = CN

\(\Rightarrow\Delta INF=\Delta CNH\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)

Mà chúng lại ở vị trí so le trong nên IF // BC.

d) Chứng minh tương tự câu c, ta có IE // BC

Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.

Vậy I, E, F thẳng hàng.

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook

2 tháng 3 2020

a, xét tam giác AMB và tam giác AMC có : AM chung

BM = CM do M là trung điểm của BC (gt)

AB = AC (gt)

=> tam giác AMB = tam giác AMC (c-c-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABD = 180 (kb)

góc ACB + góc ACE = 180 (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : BD = CE (gt)

AB = AC (gt)

=> tam giác ABD = tam giác ACE (c-g-c)

2 tháng 3 2020

còn c với d bạn