K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

A B C H 15 20

áp dụng định lý py-ta-cho cho  tam giác AHC:

\(\Rightarrow HC=\sqrt{AC^2-AH^2}\) 

\(\Leftrightarrow HC=\sqrt{20^2-15^2}\)

\(\Leftrightarrow HC=5\sqrt{7}\)

áp dụng hệ thức về cạnh và đường cao cho tam giác vuông ta có:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow15^2=HB\cdot5\sqrt{7}\)

\(\Leftrightarrow HB=\frac{45\sqrt{7}}{7}\)

ta có \(AH^2=BH\cdot BC\)

\(AH^2=\frac{45\sqrt{7}}{7}\cdot\left(\frac{45\sqrt{7}}{7}+5\sqrt{7}\right)\)

\(\Leftrightarrow AH=\frac{3600}{7}\)

b)  \(\sin HAC=\frac{HC}{AC}\)

\(\cos HAC=\frac{AH}{AC}\)

\(\tan HAC=\frac{HC}{AH}\)

\(\cot HAC=\frac{AH}{HC}\)

ỦNG HỘ MINK NHA ^-^

10 tháng 7 2016

a/ tam giác AHC vuông tại H=> \(AC^2=AH^2+HC^2\)

=>\(HC^2=AC^2-AH^2suyraHC=\sqrt{AC^2-AH^2}=\sqrt{20^2-15^2}=5\sqrt{7}cm\)

ta có \(AH^2=BH.CHsuyraBH=\frac{AH^2}{CH}=\frac{15^2}{5\sqrt{7}}=\frac{45\sqrt{7}}{7}cm\)

ta có \(AB^2=BH.BCsuyraAB=\sqrt{BH.BC}=\sqrt{\frac{45\sqrt{7}}{7}.\frac{80\sqrt{7}}{7}}=\frac{60\sqrt{7}}{7}cm\)

b/ ta có \(sinHAC=\frac{HC}{AC}=\frac{5\sqrt{7}}{20}=\frac{\sqrt{7}}{4}\)

\(cosHAC=\frac{AH}{AC}=\frac{15}{20}=\frac{3}{4}\)

\(tanHAC=\frac{HC}{AH}=\frac{5\sqrt{7}}{15}=\frac{\sqrt{7}}{3}\)

\(cotHAC=\frac{1}{tan}=\frac{1}{\frac{\sqrt{7}}{3}}=\frac{3\sqrt{7}}{7}\)

12 tháng 7 2017

A B H C

a. Xét \(\Delta AHC\)có \(AH^2+HC^2=AC^2\)(1)

Xét \(\Delta AHB\) có \(AH^2+HB^2=AB^2\)(2)

Từ (1) và (2) \(\Rightarrow HC^2-HB^2=AC^2-AB^2\left(đpcm\right)\)

b. Ta có \(HC=20-HB\Rightarrow\left(20-HB\right)^2-HB^2=AC^2-AB^2\)

\(\Rightarrow400-40HB=15^2-11^2=104\)\(\Rightarrow HB=7,4\Rightarrow HC=12,6\left(cm\right)\)

\(AH=\sqrt{AC^2-HC^2}=\sqrt{15^2-\left(12,6\right)^2}=\frac{6\sqrt{46}}{5}\left(cm\right)\)

20 tháng 7 2018

Hình vẽ:

B H C A

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

11 tháng 7 2017

A H B C 8 8 Vẽ hơi xấu , thông cảm nha ! 

 Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) ! 

                                Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)\(8\sqrt{2}\)

                               Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB ) 

                                 tiếp tục tính AB = BC2 - AC. Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !

12 tháng 12 2018

Theo hệ thức lượng trong tam giác vuông ta có 

\(15^2=9\cdot BC\)

\(BC=\frac{225}{9}=25\left(cm\right)\)

\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)

Theo định lý Pytago ta có

\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)

Ta có đặt \(\widehat{ABC}=\alpha\)

\(\sin\alpha=\frac{20}{25}=0,8\)

Tới đây mình chịu do kết quả nó hơi kỳ...