Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)
hay \(IA\cdot BH=IH\cdot BA\)(đpcm)
A) \(BI\) là tia phân giác
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)
\(\Rightarrow IA.BH=IH.BA\)
B) Xét \(\Delta ABH\) và \(\Delta CBA\):
\(\widehat{AHB}=\widehat{BAC}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB~\Delta CBA\)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AB}{BC}\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
C) \(BD\) là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\)
Mà \(\dfrac{AB}{BC}=\dfrac{BH}{BA}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{BA}=\dfrac{HI}{HA}\)
A C B I H D
a,Theo tính chất của đường phân giác ta có :
\(\frac{IA}{IH}=\frac{BA}{BH}\)\(< =>IA.BH=IH.BA\)
b, bạn lên mạng tr cm hệ thức lượng là ra nhé
c, sai đề à bạn ?
do BD là p/giác của góc ABC (gt)
=> \(\frac{AD}{DC}=\frac{AB}{BC}\)
ta lại có: BI là p/giác của góc ABC ( vì BD là p/giác . I thuộc BD)
=> \(\frac{HI}{AI}=\frac{AB}{BH}\)
=> \(\frac{HI}{AI}=\frac{AD}{DC}\) (vì cùng bằng AB/BC . H thuộc BC)
vậy \(\frac{HI}{IA}=\frac{AD}{DC}\) ( đccm)