K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

Áp dụng PTG

\(AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=BC^2=400\\ \Rightarrow\dfrac{25}{16}AC^2=400\\ \Rightarrow AC^2=256\\ \Rightarrow AC=16\left(cm\right)\\ \Rightarrow AB=12\left(cm\right)\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AB\cdot AC=96\left(cm^2\right)\)

19 tháng 8 2020

Kẻ đường cao AH (H thuộc BC) => BH/CH=9/16

=> BH=[5:(9+16)]x9=1,8 cm => CH=5-1,8=3,2 cm

\(AH^2=BH.CH=1,8.3,2=5,76\Rightarrow AH=2,4cm\)

\(S_{ABC}=\frac{BC.AH}{2}=\frac{5.2,4}{2}=6cm^2\)

25 tháng 1 2021

Hình bài này đơn giản, bạn tự vẽ.

Kẻ đường cao AH. Theo đề bài ta có:

\(\left\{{}\begin{matrix}\dfrac{BH}{CH}=\dfrac{9}{16}\\BH+CH=BC=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{9}{5}\\CH=\dfrac{16}{5}\end{matrix}\right.\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot\sqrt{BH\cdot CH}\cdot5=...\)

17 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

30 tháng 7 2023

Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::

\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)

\(\Rightarrow20^2=BC^2-BC\cdot9\)

\(\Rightarrow BC^2-9BC-400=0\)

\(\Rightarrow BC^2+16BC-25BC-400=0\)

\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)

\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)

Áp dụng hệ thức đường cao và hình chiếu ta có:

\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)

\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)

Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C 

14 tháng 9 2023

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)