K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{36}=6\left(cm\right)\)

Có diện tích tam giác ABC \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\Leftrightarrow AH.BC=AB.AC\)

\(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=4,8\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ABH vuông tại H ta có : 

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ACH vuông tại H ta có : 

\(CH=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4\left(cm\right)\)

1 tháng 3 2016

A B C H 9 16

19 tháng 5 2022

Vì G là trọng tâm ΔABC

⇒AG=2323 AH=2323 18=12(cm)

Mà AG=2GH

⇒GH=AG2AG2 =122122 =6(cm)

BH=HC(do AH là trung tuyến BC)

⇒BH=HC=BC2BC2 =162162 =8(cm)

Xét ΔGHC có:

   GH²+HC²=GC²(Định lí Pi-ta-go)

⇒6²+8²=GC²

⇒36+64=GC²

⇒GC²=100=10²

⇒GC=10(cm)

Mà GC=2GI

⇒GI=GC2GC2 =102102=5(cm)

Vậy độ dài cạnh GI là 5cm

d)Ta có:

Theo b) GI=GK

⇒ΔIGK là tam giác cân tại G

{GC=2GIGB=2GK{GC=2GIGB=2GK

Mà GI=GK

⇒GC=GB

⇒ΔGBC là tam giác cân tại G

Ta có:

∠KIG=∠IKG=180∗−∠IGK2180∗−∠IGK2

∠GBC=∠GCB=180∗−∠BGC2180∗−∠BGC2

Mà ∠IGK=∠BGC(đối đỉnh)

⇒∠KIG=∠GCB

Mà 2 góc ở vị trí so le trong 

⇒IK=BC

19 tháng 5 2022

Tham khảo

Anser reply image

1 tháng 9 2021

Ko bt lm tự lm đi e

 

1 tháng 9 2021

Hay ạ

Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :

\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)

Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)

20 tháng 3 2018

có hình nữa nha

20 tháng 3 2018

A B C

Theo định lí Pitago,ta có:

\(BC^2=10^2=100=AB^2+AC^2=AB^2+6^2=AB^2+36\)

\(\Rightarrow AB^2=100-36=64\)

\(\Rightarrow AB=8\)

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC