Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) công thức . \(\frac{đáy.chiềucao}{2}\)
b) Áp dụng định lý pitago ta có
\(BC^2=AB^2+AC^2\)
=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)
=>\(AC=8\)
A)Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2
B)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(ĐL Pytago)
Thay số:36+AC^×=100
<=>AC=căn64=8cm
Ta có:SABC=(AB.AC)/2
Thay số:SABC=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.BC)/2=24
Thay số:AH=24.2:10=4,8cm
SABC=24CM^2(cmt)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
![](https://rs.olm.vn/images/avt/0.png?1311)
đừng bắt trc t hiếu à , m càng ngày càng giống t rồi đấy , đờ mờ
Hình bạn tự vẽ nhé!
Bài làm:
Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2\)\(\Leftrightarrow BC^2-AB^2=AC^2\Leftrightarrow9^2-4^2=AC^2\)
\(\Leftrightarrow AC^2=65\Leftrightarrow AC=\sqrt{65}\)(cm)
\(\Delta AHB\)đồng dang với \(\Delta CAB\)(g.g) vì:
\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)
=> \(\frac{AB}{AH}=\frac{BC}{CA}\)
\(\Leftrightarrow AH=\frac{AB.CA}{BC}=\frac{4\sqrt{65}}{9}\)(cm)
Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)
Học tốt!!!!
Lại không vẽ được hình =((
Áp dụng định lý Pythagoras cho tam giác ABC vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(< =>BC=\sqrt{AB^2+AC^2}\)
\(< =>9=\sqrt{16+AC^2}\)
\(< =>16+AC^2=81\)
\(< =>AC^2=81-16=65\)
\(< =>AC=\sqrt{65}\)
Theo hệ thức lượng trong tam giác vuông ta có :
\(AB.AC=AH.BC\)
\(< =>4\sqrt{65}=9AH\)
\(< =>AH=\frac{4\sqrt{65}}{9}\)
Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)